咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是611-620 订阅
排序:
Uncertainty quantification for sparse Fourier recovery
arXiv
收藏 引用
arXiv 2022年
作者: Hoppe, Frederik Krahmer, Felix Verdun, Claudio Mayrink Menzel, Marion I. Rauhut, Holger Mathematics of Information Processing RWTH Aachen University Aachen Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Munich Germany Department of Mathematics Department of Electrical and Computer Engineering Technical University of Munich Munich Center for Machine Learning Munich Germany AImotion Bavaria Faculty of Electrical Engineering and Information Technology Technische Hochschule Ingolstadt Ingolstadt Department of Physics Technical University of Munich Garching and GE Healthcare Munich Germany Department of Mathematics LMU Munich Germany
One of the most prominent methods for uncertainty quantification in high-dimensional statistics is the desparsified LASSO that relies on unconstrained 1-minimization. The majority of initial works focused on real (sub... 详细信息
来源: 评论
Cost-Effective Communication in UDN in Indoor and Outdoor Environment via machine learning
Cost-Effective Communication in UDN in Indoor and Outdoor En...
收藏 引用
Artificial Intelligence and Knowledge Discovery in Concurrent Engineering (ICECONF), International Conference on
作者: K Nattar Karman V. Velmurugan Kommisetti Murthy Raju T. Sajana V. Vijayalakshmi JoshuvaArockia Dhanraj Departmeru of Artificial Intelligence and Machine Learning Saveetha School of Engineering Chennai Tamil Nadu India Department of Electronics and Communication Engineering Vel Tech Rangarajan and Dr.Sagunthala R&D Institute of science and Technology Chennai Tamil Nadu India Department of Electronics and Communication Engineering Shri Vishnu Engineering College for Women West Godavari Andhra Pradesh India Department of Artificial Intelligence and Data Science KoneruLakshmaiah Education Foundation Vaddeswaram Andhra Pradesh India Department of Networking and Communications School of Computing SRM Institute of Science and Technology Kattankulathur Tamil Nadu India Department of Mechatronics Engineering Centre for Automation and Robotics (ANRO) Hindustan Institute of Technology and Science Chennai Tamil Nadu India
In general, applications on a densely populated network are slower. When there are no opportunities to interact with the devices on the network, the user is forced to communicate at some cost. Thus, the inconsistency ... 详细信息
来源: 评论
Accurate machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
arXiv
收藏 引用
arXiv 2022年
作者: Unke, Oliver T. Stöhr, Martin Ganscha, Stefan Unterthiner, Thomas Maennel, Hartmut Kashubin, Sergii Ahlin, Daniel Gastegger, Michael Sandonas, Leonardo Medrano Tkatchenko, Alexandre Müller, Klaus-Robert Google Research Brain Team Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BASLEARN TU Berlin Berlin10587 Germany BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes. Accurate MD simulations require computationally demanding quantum-mechanical calculations, being practically limited... 详细信息
来源: 评论
machine learning of Thermodynamic Observables in the Presence of Mode Collapse  38
Machine Learning of Thermodynamic Observables in the Presenc...
收藏 引用
38th International Symposium on Lattice Field Theory, LATTICE 2021
作者: Nicoli, Kim A. Anders, Christopher J. Funcke, Lena Hartung, Tobias Jansen, Karl Kessel, Pan Nakajima, Shinichi Stornati, Paolo Technische Universität Berlin Machine Learning Group Marchstrasse 23 Berlin10587 Germany Technische Universität Berlin Berlin Germany Center for Theoretical Physics Co-Design Center for Quantum Advantage NSF AI Institute for Artificial Intelligence and Fundamental Interactions Massachusetts Institute of Technology 77 Massachusetts Avenue CambridgeMA02139 United States Perimeter Institute for Theoretical Physics 31 Caroline Street North WaterlooONN2L 2Y5 Canada Computation-Based Science and Technology Research Center The Cyprus Institute 20 Kavafi Street Nicosia2121 Cyprus Department of Mathematical Sciences University of Bath Bath United Kingdom Deutsches Elektronen-Synchrotron DESY Platanenallee 6 Zeuthen15738 Germany RIKEN Center for AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan ICFO The Barcelona Institute of Science and Technology Av. Carl Friedrich Gauss 3 Castelldefels Barcelona08860 Spain
Estimating the free energy, as well as other thermodynamic observables, is a key task in lattice field theories. Recently, it has been pointed out that deep generative models can be used in this context [1]. Crucially... 详细信息
来源: 评论
Software for dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy
arXiv
收藏 引用
arXiv 2021年
作者: Anders, Christopher J. Neumann, David Samek, Wojciech Müller, Klaus-Robert Lapuschkin, Sebastian Machine Learning Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany Machine Learning and Communications Group Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max Planck Institut für Informatik Saarbrücken Germany
Deep Neural Networks (DNNs) are known to be strong predictors, but their prediction strategies can rarely be understood. With recent advances in Explainable Artificial Intelligence (XAI), approaches are available to e... 详细信息
来源: 评论
Insightful analysis of historical sources at scales beyond human capabilities using unsupervised machine learning and XAI
arXiv
收藏 引用
arXiv 2023年
作者: Eberle, Oliver Büttner, Jochen El-Hajj, Hassan Montavon, Grégoire Müller, Klaus-Robert Valleriani, Matteo Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Max Planck Institute for the History of Science Boltzmannstr. 22 Berlin14195 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Institute of History and Philosophy of Science Technology and Literature Faculty I - Humanities and Educational Sciences Technische Universität Berlin Straße des 17. Juni 135 Berlin10623 Germany The Cohn Institute for the History and Philosophy of Science and Ideas Faculty of Humanities Tel Aviv University P.O.B. 39040 Ramat Aviv Tel Aviv6139001 Israel
Historical materials are abundant. Yet, piecing together how human knowledge has evolved and spread both diachronically and synchronically remains a challenge that can so far only be very selectively addressed. The va... 详细信息
来源: 评论
Sports-QA: A Large-Scale Video Question Answering Benchmark for Complex and Professional Sports
arXiv
收藏 引用
arXiv 2024年
作者: Li, Haopeng Deng, Andong Liu, Jun Rahmani, Hossein Guo, Yulan Schiele, Bernt Bennamoun, Mohammed Ke, Qiuhong School of Computing and Information Systems University of Melbourne Australia Center for Research in Computer Vision University of Central Florida United States Pillar Singapore University of Technology and Design Singapore School of Computing and Communications Lancaster University United Kingdom School of Electronics and Communication Engineering Sun Yat-sen University China Department of Computer Vision and Machine Learning Max Planck Institute for Informatics Saarland Informatics Campus Germany School of Physics Maths and Computing University of Western Australia Australia Department of Data Science & AI Monash University Australia
Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relev... 详细信息
来源: 评论
Autonomous data extraction from peer reviewed literature for training machine learning models of oxidation potentials
arXiv
收藏 引用
arXiv 2023年
作者: Lee, Siwoo Heinen, Stefan Khan, Danish Von Lilienfeld, O. Anatole Department of Chemistry University of Toronto St. George campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Department of Materials Science and Engineering University of Toronto St. George campus TorontoON Canada Department of Physics University of Toronto St. George campus TorontoON Canada Machine Learning Group Technische Universität Berlin Berlin Institute for the Foundations of Learning and Data Berlin Germany
We present an automated data-collection pipeline involving a convolutional neural network and a large language model to extract user-specified tabular data from peer-reviewed literature. The pipeline is applied to 74 ... 详细信息
来源: 评论
Emulation of cosmological mass maps with conditional generative adversarial networks
arXiv
收藏 引用
arXiv 2020年
作者: Perraudin, Nathanaël Marcon, Sandro Lucchi, Aurelien Kacprzak, Tomasz Swiss Data Science Center ETH Zurich Institute for Machine Learning ETH Zurich Institute for Particle Physics and Astrophysics ETH Zurich
Weak gravitational lensing mass maps play a crucial role in understanding the evolution of structures in the universe and our ability to constrain cosmological models. The prediction of these mass maps is based on exp... 详细信息
来源: 评论
A systematic review of machine learning-based tumor-infiltrating lymphocytes analysis in colorectal cancer: Overview of techniques, performance metrics, and clinical outcomes
收藏 引用
Computers in Biology and Medicine 2024年 173卷 108306-108306页
作者: Kazemi, Azar Rasouli-Saravani, Ashkan Gharib, Masoumeh Albuquerque, Tomé Eslami, Saeid Schüffler, Peter J. Department of Medical Informatics School of Medicine Mashhad University of Medical Sciences Mashhad Iran Institute of General and Surgical Pathology Technical University of Munich Munich Germany Student Research Committee Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran Department of Pathology Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran INESC TEC -Rua Dr. Roberto Frias Porto Portugal Pharmaceutical Sciences Research Center Institute of Pharmaceutical Technology Mashhad University of Medical Sciences Mashhad Iran Department of Medical Informatics University of Amsterdam Amsterdam Netherlands TUM School of Computation Information and Technology Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Munich Data Science Institute Munich Germany
The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on... 详细信息
来源: 评论