咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是621-630 订阅
排序:
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
收藏 引用
Physical Review Letters 2023年 第17期130卷 171403-171403页
作者: Maximilian Dax Stephen R. Green Jonathan Gair Michael Pürrer Jonas Wildberger Jakob H. Macke Alessandra Buonanno Bernhard Schölkopf Max Planck Institute for Intelligent Systems Max-Planck-Ring 4 72076 Tübingen Germany Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1 14476 Potsdam Germany School of Mathematical Sciences University of Nottingham University Park Nottingham NG7 2RD United Kingdom Department of Physics East Hall University of Rhode Island Kingston Rhode Island 02881 USA URI Research Computing Tyler Hall University of Rhode Island Kingston Rhode Island 02881 USA Machine Learning in Science University of Tübingen 72076 Tübingen Germany Department of Physics University of Maryland College Park Maryland 20742 USA
We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and th... 详细信息
来源: 评论
Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution
arXiv
收藏 引用
arXiv 2024年
作者: Xiong, Jiaqi Yin, Nan Liang, Shiyang Li, Haoyang Wang, Yingxu Ai, Duo Pan, Fang Wang, Jingjie Department of Gastroenterology Tangdu Hospital Fourth Military Medical University Shaanxi 710038 China Aberdeen Institute of Data Science and Artificial Intelligence South China Normal University Guangzhou528225 China Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong Department of Internal Medicine The No. 944 Hospital of Joint Logistic Support Force of PLA Xiongguan Road Jiu Quan735000 China Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Department of Dermatology Xijing Hospital Fourth Military Medical University No 127 of West Changle Road Shaanxi Xi’an710032 China
Inferencing Gene Regulatory Networks (GRNs) from gene expression data is a pivotal challenge in systems biology, and several innovative computational methods have been introduced. However, most of these studies have n... 详细信息
来源: 评论
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big data System
TEEM: Two-Factor Energy Evaluation Metric Toward Green Big D...
收藏 引用
IEEE Conference on Global Communications (GLOBECOM)
作者: Weidong Fang Chunsheng Zhu Mohsen Guizani Zhiqi Li Wuxiong Zhang Joel J.P.C. Rodrigues Science and Technology on Micro-system Laboratory Shanghai Institute of Micro-system and Information Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Beijing China Shanghai Research and Development Center for Micro-Nano Electronics Shanghai China College of Big Data and Internet Shenzhen Technology University Shenzhen China Machine Learning Department Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI) UAE COPELABS Lusófona University Lisbon Portugal
Toward green Big data System (BDS), one of the key requirements is to save energy consumption so that the system lifetime can be prolonged. Hence, the energy evaluation metric for the measurement of energy efficiency ...
来源: 评论
DSGD-CECA: Decentralized SGD with Communication-Optimal Exact Consensus Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Ding, Lisang Jin, Kexin Ying, Bicheng Yuan, Kun Yin, Wotao Department of Mathematics University of California Los AngelesCA United States Department of Mathematics Princeton University PrincetonNJ United States Google Inc. Los AngelesCA United States Center for Machine Learning Research Peking University Beijing China AI for Science Institute Beijing China National Engineering Labratory for Big Data Analytics and Applications Beijing China Decision Intelligence Lab. Alibaba US BellevueWA United States
Decentralized Stochastic Gradient Descent (SGD) is an emerging neural network training approach that enables multiple agents to train a model collaboratively and simultaneously. Rather than using a central parameter s... 详细信息
来源: 评论
Improved decision making with similarity based machine learning: Applications in chemistry
arXiv
收藏 引用
arXiv 2022年
作者: Lemm, Dominik von Rudorff, Guido Falk von Lilienfeld, O. Anatole University of Vienna Faculty of Physics Kolingasse 14-16 ViennaAT-1090 Austria University of Vienna Vienna Doctoral School in Physics Boltzmanngasse 5 ViennaAT-1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Despite the fundamental progress in autonomous molecular and materials discovery, data scarcity throughout chemical compound space still severely hampers the use of modern ready-made machine learning models as they re... 详细信息
来源: 评论
Set-valued prediction in multi-class classification  31
Set-valued prediction in multi-class classification
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on machine learning, BNAIC/BENELEARN 2019
作者: Mortier, Thomas Wydmuch, Marek Dembczýnski, Krzysztof Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modelling Ghent University Belgium Institute of Computing Science Poznán University of Technology Poland Intelligent Systems and Machine Learning Universität Paderborn Germany
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an opt... 详细信息
来源: 评论
Dynamics, Statistics, and Predictability of Rossby Waves, Heat Waves, and Spatially Compounding Extreme Events
Dynamics, Statistics, and Predictability of Rossby Waves, He...
收藏 引用
作者: Lembo, Valerio Bordoni, Simona Bevacqua, Emanuele Domeisen, Daniela I.V. Franzke, Christian L.E. Galfi, Vera M. Garfinkel, Chaim I. Grams, Christian M. Hochman, Assaf Jha, Roshan Kornhuber, Kai Kwasniok, Frank Lucarini, Valerio Messori, Gabriele Pappert, Duncan Perez-Fernandez, Iago Riboldi, Jacopo Russo, Emmanuele Shaw, Tiffany A. Strigunova, Iana Strnad, Felix Yiou, Pascal Zagar, Nedjeljka Bologna Italy University of Trento Trento Italy Department of Compound Environmental Risks Helmholtz Centre for Environmental Research – UFZ Leipzig Germany University of Lausanne Lausanne Switzerland Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland Center for Climate Physics Institute for Basic Science Busan Korea Republic of Pusan National University Busan Korea Republic of Institute for Environmental Studies Vrije Universiteit Amsterdam Amsterdam Netherlands Fredy and Nadine Herrmann Institute of Earth Sciences The Hebrew University of Jerusalem Jerusalem Israel Federal Office of Meteorology and Climatology MeteoSwiss Zurich-Airport Switzerland IDP in Climate Studies Indian Institute of Technology Bombay Mumbai India International Institute of Applied Systems Analysis Laxenburg Austria Potsdam Institute for Climate impact Research Potsdam Germany Lamont-Doherty Earth Observatory Columbia University New YorkNY United States Department of Mathematics and Statistics University of Exeter Exeter United Kingdom School of Computing and Mathematical Sciences University of Leicester Leicester United Kingdom Department of Earth Sciences Uppsala University Uppsala Sweden Uppsala University Uppsala Sweden Department of Meteorology Bolin Centre for Climate Research Stockholm University Stockholm Sweden Institute of Geography University of Bern Bern Switzerland University of Bern Bern Switzerland Departamento de Ciencias de la atmósfera y Física de los Océanos Facultad de Ciencias Universidad de la República Montevideo Uruguay Department of the Geophysical Sciences The University of Chicago ChicagoIL United States Machine Learning in Climate Science University of Tübingen Tübingen Germany Laboratoire des Sciences du Climat et de’Environnement UMR8212 CEA-CNRS-UVSQ IPSL & Université Paris-Saclay Gif-sur-Yvette France Meteorological Institute CEN Universität Hamburg Hamburg Germany
来源: 评论
The unrealized potential of agroforestry for an emissions-intensive agricultural commodity
arXiv
收藏 引用
arXiv 2024年
作者: Becker, Alexander Wegner, Jan D. Dawoe, Evans Schindler, Konrad Thompson, William J. Bunn, Christian Garrett, Rachael D. Castro, Fabio Hart, Simon P. Blaser-Hart, Wilma J. ETH Zurich Switzerland EcoVision Lab Dept. of Mathematical Modeling and Machine Learning University of Zurich Switzerland Dept. of Agroforestry Faculty of Renewable Natural Resources Kwame Nkrumah University of Science and Technology Kumasi Ghana Nature-based Solutions Initiative Department of Biology University of Oxford OxfordOX12JD United Kingdom Alliance of Bioversity International and CIAT Rome00153 Italy Department of Geography Conservation Research Institute University of Cambridge Cambridge United Kingdom School of the Environment The University of Queensland St LuciaQLD4072 Australia
Reconciling agricultural production with climate-change mitigation and adaptation is one of the most formidable problems in sustainability. One proposed strategy for addressing this problem is the judicious retention ... 详细信息
来源: 评论
Distributional Drift Adaptation with Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting
arXiv
收藏 引用
arXiv 2022年
作者: He, Hui Zhang, Qi Yi, Kun Shi, Kaize Niu, Zhendong Cao, Longbing The School of Medical Technology Beijing Institute of Technology Beijing100081 China The School of Computer Science and Technology Beijing Institute of Technology Beijing100081 China The Department of Computer Science Tongji University Shanghai201804 China The Data Science and Machine Intelligence Lab University of Technology SydneyNSW2007 Australia The Engineering Research Center of Integration and Application of Digital Learning Technology Ministry of Education China The DataX Research Centre School of Computing Macquarie University SydneyNSW2109 Australia
Due to the non-stationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distrib... 详细信息
来源: 评论
Traffic4cast at NeurIPS 2021 – Temporal and Spatial Few-Shot Transfer learning in Gridded Geo-Spatial Processes
arXiv
收藏 引用
arXiv 2022年
作者: Eichenberger, Christian Neun, Moritz Martin, Henry Herruzo, Pedro Spanring, Markus Lu, Yichao Choi, Sungbin Konyakhin, Vsevolod Lukashina, Nina Shpilman, Aleksei Wiedemann, Nina Raubal, Martin Wang, Bo Vu, Hai L. Mohajerpoor, Reza Cai, Chen Kim, Inhi Hermes, Luca Melnik, Andrew Velioglu, Riza Vieth, Markus Schilling, Malte Bojesomo, Alabi Al Marzouqi, Hasan Liatsis, Panos Santokhi, Jay Hillier, Dylan Yang, Yiming Sarwar, Joned Jordan, Anna Hewage, Emil Jonietz, David Tang, Fei Gruca, Aleksandra Kopp, Michael Kreil, David Hochreiter, Sepp Vienna Austria Institute of Cartography and Geoinformation ETH Zurich Switzerland Layer 6 AI Toronto Canada ITMO University Saint Petersburg Russia JetBrains Research Saint Petersburg Russia HSE University Saint Petersburg Russia Institute of Transport Studies Monash University ClaytonVIC Australia CSIRO’s Data61 Eveleigh Australia Institute Civil and Environmental Engineering Department Kongju National University Korea Republic of Machine Learning & Neuroinformatics Group Bielefeld University Germany Electrical Engineering and Computer Science Department Khalifa University Abu Dhabi United Arab Emirates Alchera Data Technologies Ltd Cambridge United Kingdom HERE Technologies Zurich Switzerland Silesian University of Technology Gliwice Poland Machine Learning Institute Johannes Kepler University Linz Austria
The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks can successfully predict future traffic conditions 1 hour into the future on simply aggregated GPS probe data in time and space ... 详细信息
来源: 评论