咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是641-650 订阅
排序:
Exploring Self-Attention for Crop-type Classification Explainability
arXiv
收藏 引用
arXiv 2022年
作者: Obadic, Ivica Roscher, Ribana Oliveira, Dario Augusto Borges Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Munich Center for Machine Learning [MCML Arcisstraße 21 Munich80333 Germany Research Center Jülich Institute of Bio- and Geosciences Plant Sciences Wilhelm-Johnen-Straße Jülich52428 Germany International AI Future Lab: Artificial Intelligence for Earth Observation TUM and with School of Applied Mathematics Getulio Vargas Foundation Rio de Janeiro Brazil Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany
Automated crop-type classification using Sentinel-2 satellite time series is essential to support agriculture monitoring. Recently, deep learning models based on transformer encoders became a promising approach for cr... 详细信息
来源: 评论
An Innovative Design Of A Reusable Constellation Of CubeSats For Space Debris Removal  73
An Innovative Design Of A Reusable Constellation Of CubeSats...
收藏 引用
73rd International Astronautical Congress, IAC 2022
作者: Shukla, Aayush Thuluva, Sushmith Kodukula, Ananya Bharadwaj, Vyoma Jain, Alankriti Shadaksharaiah, Anushree Maligehalli Pulicallu, Greeshmanth Kadagadakai, Vishnurat Rai, Riddhi Mitra, Ruhi Prabhu, M. Nanditha Department of Artificial Intelligence & Machine Learning Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electrical and Computer Engineering Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Computer Science & Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electronics & Telecommunication Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Electronics & Instrumentation Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Mechanical Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Artificial Intelligence & Data Science Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India Department of Information Science & Engineering Ramaiah Institute of Technology MSRIT Post M S Ramaiah Nagar MSR Nagar Karnataka Bengaluru560054 India
Space debris is one significant setback in our attempt to explore space and enhance satellite technology. Eradicating this upshot is eminent to our future missions and a safe environment for our planet. The scale of t... 详细信息
来源: 评论
DORA: Exploring Outlier Representations in Deep Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Bykov, Kirill Deb, Mayukh Grinwald, Dennis Müller, Klaus-Robert Höhne, Marina M.-C. Potsdam Germany Technical University of Berlin Berlin Germany Machine Learning Group Technical University of Berlin Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institut für Informatik Saarbrücken66123 Germany Google Research Brain Team Berlin Germany Department of Computer Science University of Potsdam Germany Department of Physics and Technology UiT Arctic University of Norway Norway
Deep Neural Networks (DNNs) excel at learning complex abstractions within their internal representations. However, the concepts they learn remain opaque, a problem that becomes particularly acute when models unintenti... 详细信息
来源: 评论
Deep CNN: A machine learning approach for driver drowsiness detection based on eye state
收藏 引用
Revue d'Intelligence Artificielle 2019年 第6期33卷 461-466页
作者: Reddy Chirra, Venkata Rami Uyyala, Srinivasulu Reddy Kishore Kolli, Venkata Krishna Department of Computer Applications National Institute of Technology Tiruchirappalli620015 India Machine Learning and Data Analytics Lab Department of Computer Applications National Institute of Technology Tiruchirappalli620015 India Department of Computer Science and Engineering VFSTR Guntur522213 India
Driver drowsiness is one of the reasons for large number of road accidents these days. With the advancement in Computer Vision technologies, smart/intelligent cameras are developed to identify drowsiness in drivers, t... 详细信息
来源: 评论
TOWARDS DIVERSE EVALUATION OF CLASS INCREMENTAL learning: A REPRESENTATION learning PERSPECTIVE
arXiv
收藏 引用
arXiv 2022年
作者: Cha, Sungmin Kwak, Jihwan Shim, Dongsub Kim, Hyunwoo Lee, Moontae Lee, Honglak Moon, Taesup Computer Science Department The Courant Institute of Mathematical Sciences New York University United States Department of Electrical and Computer Engineering Seoul National University Korea Republic of Advanced Machine Learning Lab LG AI Research Korea Republic of Zhejiang Lab China Department of Information and Decision Sciences University of Illinois Chicago United States ASRI INMC IPAI AIIS Seoul National University Korea Republic of
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data while not forgetting past learned classes. The common evaluation protocol for CIL algorithms is ... 详细信息
来源: 评论
Efficient dataset generation for machine learning halide perovskite alloys
收藏 引用
Physical Review Materials 2025年 第5期9卷 053802-053802页
作者: Henrietta Homm Jarno Laakso Patrick Rinke Department of Applied Physics Aalto University 00076 Aalto Finland Physics Department Technical University of Munich Garching Germany Atomistic Modelling Center Munich Data Science Institute Technical University of Munich Garching Germany Munich Center for Machine Learning (MCML) Munich Germany
Lead-based perovskite solar cells have reached high efficiencies, but toxicity and lack of stability hinder their wide-scale adoption. These issues have been partially addressed through compositional engineering of pe... 详细信息
来源: 评论
Lung Ultrasound for the Detection of Pulmonary Tuberculosis Using Expert- and AI-Guided Interpretation: A Prospective Cohort Study
SSRN
收藏 引用
SSRN 2025年
作者: Suttels, Véronique Brokowski, Trevor Wachinou, Ablo Prudence Wolleb, Julia Hada, Aboudou Rasisou Du Toit, Jacques Daniel Fiogbé, Arnauld Attannon Guendehou, Brice Alovokpinhou, Frederic Sefou, Fadyl Makpemikpa, Ginette Bessat, Cécile Roux, Alexia Garcia, Elena Brahier, Thomas Opota, Onya Doenz, Jonathan Vignoud, Julien Agodokpessi, Gildas Affolabi, Dissou Hartley, Mary-Anne Boillat-Blanco, Noémie Department of Medicine Infectious Diseases Lausanne University Hospital University of Lausanne Lausanne Switzerland Yale School of Medicine Department of Biomedical Informatics & Data Science New HavenCT06510 United States Cotonou Benin Faculty of Health Sciences University of the Witwatersrand Johannesburg South Africa Emergency Department Lausanne University Hospital University of Lausanne Lausanne1011 Switzerland Institute of Microbiology University of Lausanne University Hospital Centre Lausanne Switzerland Lausanne1015 Switzerland National Reference Laboratory for Mycobacteriology Cotonou Benin Yale University United States Faculty of Health Sciences Benin Intelligent Global Health Machine Learning and Optimization Laboratory
Background: Point-of-care lung ultrasound (LUS) is a promising tool for portable sputum-free tuberculosis (TB) triage. We investigate the diagnostic performance of LUS to detect TB using expert and artificial intellig... 详细信息
来源: 评论
Species-Specific Responses of Canopy Greenness to the Extreme Droughts of 2018 and 2022 for Four Abundant Tree Species in Germany
SSRN
收藏 引用
SSRN 2024年
作者: Wang, Yixuan Rammig, Anja Blickensdörfer, Lukas Wang, Yuanyuan Zhu, Xiao Xiang Buras, Allan Professorship for Land Surface-Atmosphere Interactions Technical University of Munich Hans-Carl-v.-Carlowitz-Platz 2 Freising85354 Germany Thünen Institute of Farm Economics Bundesallee 63 Braunschweig38116 Germany Thünen Institute of Forest Ecosystems Alfred-Moeller-Straße 1 Eberswalde16225 Germany Earth Observation Lab Geography Department Humboldt-Universität zu Berlin Unter den Linden 6 Berlin10099 Germany Chair of Data Science in Earth Observation Technical University of Munich Arcisstraße 21 Munich80333 Germany Munich Center for Machine Learning Arcisstraße 21 Munich80333 Germany
The years 2018 and 2022 witnessed extreme drought periods in Germany, which significantly affected forests. These repeated droughts were a natural experiment that provided valuable insights into how different tree spe... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Adapting to noise distribution shifts in flow-based gravitational-wave inference
收藏 引用
Physical Review D 2023年 第8期107卷 084046-084046页
作者: Jonas Wildberger Maximilian Dax Stephen R. Green Jonathan Gair Michael Pürrer Jakob H. Macke Alessandra Buonanno Bernhard Schölkopf Max Planck Institute for Intelligent Systems Max-Planck-Ring 4 72076 Tübingen Germany School of Mathematical Sciences University of Nottingham University Park Nottingham NG7 2RD United Kingdom Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Am Mühlenberg 1 14476 Potsdam Germany Department of Physics East Hall University of Rhode Island Kingston Rhode Island 02881 USA URI Research Computing Tyler Hall University of Rhode Island Kingston Rhode Island 02881 USA Machine Learning in Science University of Tübingen 72076 Tübingen Germany Department of Physics University of Maryland College Park Maryland 20742 USA
Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers—producing results of comparable accuracy. These approaches (e.g., DINGO) enable amortized i... 详细信息
来源: 评论