咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是651-660 订阅
排序:
On ADMM in deep learning: convergence and saturation-avoidance
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2021年 第1期22卷 9024-9090页
作者: Jinshan Zeng Shao-Bo Lin Yuan Yao Ding-Xuan Zhou School of Computer and Information Engineering Jiangxi Normal University Nanchang China and Liu Bie Ju Centre for Mathematical Sciences City University of Hong Kong Hong Kong and Department of Mathematics Hong Kong University of Science and Technology Hong Kong Center of Intelligent Decision-Making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China Department of Mathematics Hong Kong University of Science and Technology Hong Kong School of Data Science and Department of Mathematics City University of Hong Kong Hong Kong
In this paper, we develop an alternating direction method of multipliers (ADMM) for deep neural networks training with sigmoid-type activation functions (called sigmoid-ADMM pair), mainly motivated by the gradient-fre... 详细信息
来源: 评论
Homophily outlier detection in non-IID categorical data
arXiv
收藏 引用
arXiv 2021年
作者: Pang, Guansong Cao, Longbing Chen, Ling Australian Institute for Machine Learning University of Adelaide AdelaideSA5000 Australia University of Technology Sydney Australia Data Science Lab University of Technology Sydney SydneyNSW2007 Australia Center of Artificial Intelligence University of Technology Sydney SydneyNSW2007 Australia
Most of existing outlier detection methods assume that the outlier factors (i.e., outlierness scoring measures) of data entities (e.g., feature values and data objects) are Independent and Identically Distributed (IID... 详细信息
来源: 评论
Towards DMC accuracy across chemical space with scalable ∆-QML
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Bing von Lilienfeld, O. Anatole Krogel, Jaron T. Benali, Anouar University of Vienna Faculty of Physics Kolingasse 14-16 Vienna1090 Austria Departments of Chemistry Materials Science and Engineering and Physics University of Toronto St. George Campus TorontoON Canada Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Machine Learning Group Technische Universität Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Materials Science and Technology Division Oak Ridge National Laboratory Oak RidgeTN37831 United States Computational Sciences Division Argonne National Laboratory ArgonneIL60439 United States
In the past decade, quantum diffusion Monte Carlo (DMC) has been demonstrated to successfully predict the energetics and properties of a wide range of molecules and solids by numerically solving the electronic many-bo... 详细信息
来源: 评论
Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using Spatial and Temporal Transformers
arXiv
收藏 引用
arXiv 2021年
作者: Zhu, Tianyu Hiller, Markus Ehsanpour, Mahsa Ma, Rongkai Drummond, Tom Reid, Ian Rezatofighi, Hamid The Department of Electrical and Computer Systems Engineering Monash University Australia The School of Computing and Information Systems The University of Melbourne Australia The Australian Institute for Machine Learning The University of Adelaide Australia The Department of Data Science and AI Monash University Australia The Australian Centre for Robotic Vision Australia
Tracking a time-varying indefinite number of objects in a video sequence over time remains a challenge despite recent advances in the field. Most existing approaches are not able to properly handle multi-object tracki... 详细信息
来源: 评论
PAC-Bayes meta-learning with implicit task-specific posteriors
arXiv
收藏 引用
arXiv 2020年
作者: Nguyen, Cuong Do, Thanh-Toan Carneiro, Gustavo The Australian Institute for Machine Learning University of Adelaide SA5000 Australia The Department of Data Science and AI Faculty of Information Technology Monash University Australia
We introduce a new and rigorously-formulated PAC-Bayes meta-learning algorithm that solves few-shot learning. Our proposed method extends the PAC-Bayes framework from a single task setting to the meta-learning multipl... 详细信息
来源: 评论
Transformer-based normative modelling for anomaly detection of early schizophrenia
arXiv
收藏 引用
arXiv 2022年
作者: Da Costa, Pedro F. Dafflon, Jessica Mendes, Sergio Leonardo Sato, João Ricardo Jorge Cardoso, M. Leech, Robert Jones, Emily J.H. Pinaya, Walter H.L. Institute of Psychiatry Psychology & Neuroscience King’s College London United Kingdom Centre for Brain and Cognitive Development Birkbeck College London United Kingdom Data Science and Sharing Team National Institute of Mental Health BethesdaMD United States Machine Learning Team National Institute of Mental Health BethesdaMD United States Center of Mathematics Computing and Cognition Universidade Federal do ABC Brazil School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom
Despite the impact of psychiatric disorders on clinical health, early-stage diagnosis remains a challenge. machine learning studies have shown that classifiers tend to be overly narrow in the diagnosis prediction task... 详细信息
来源: 评论
Accurate global machine learning force fields for molecules with hundreds of atoms
arXiv
收藏 引用
arXiv 2022年
作者: Chmiela, Stefan Vassilev-Galindo, Valentin Unke, Oliver T. Kabylda, Adil Sauceda, Huziel E. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data – BIFOLD Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg Google Research Brain Team Berlin Germany Departamento de Materia Condensada Instituto de Física Universidad Nacional Autónoma de México Cd. de MéxicoC.P. 04510 Mexico BASLEARN - TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of
Global machine learning force fields (MLFFs), that have the capacity to capture collective many-atom interactions in molecular systems, currently only scale up to a few dozen atoms due a considerable growth of the mod... 详细信息
来源: 评论
Alchemical harmonic approximation based potential for iso-electronic diatomics: Foundational baseline for ∆-machine learning
arXiv
收藏 引用
arXiv 2024年
作者: Krug, Simon León Khan, Danish von Lilienfeld, O. Anatole Machine Learning Group Technische Universität Berlin Berlin Charlottenburg 10587 Germany Vector Institute for Artificial Intelligence TorontoONM5S 1M1 Canada Department of Chemistry University of Toronto St. George campus TorontoONM5S 3H6 Canada Berlin Institute for the Foundations of Learning and Data Charlottenburg Berlin10587 Germany Acceleration Consortium University of Toronto 80 St George St TorontoONM5S 3H6 Canada Department of Materials Science and Engineering University of Toronto St. George campus TorontoONM5S 3E4 Canada Department of Physics University of Toronto St. George campus TorontoONM5S 1A7 Canada
We introduce the alchemical harmonic approximation (AHA) of the absolute electronic energy for charge-neutral iso-electronic diatomics at fixed interatomic distance d0. To account for variations in distance, we combin... 详细信息
来源: 评论
Reinforcement learning in continuous time and space: a stochastic control approach
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 8145-8178页
作者: Haoran Wang Thaleia Zariphopoulou Xun Yu Zhou CAI Data Science and Machine Learning The Vanguard Group Inc. Malvern PA Department of Mathematics and IROM The University of Texas at Austin Austin TX and Oxford-Man Institute University of Oxford Oxford UK Department of Industrial Engineering and Operations Research The Data Science Institute Columbia University New York NY
We consider reinforcement learning (RL) in continuous time with continuous feature and action spaces. We motivate and devise an exploratory formulation for the feature dynamics that captures learning under exploration... 详细信息
来源: 评论
Self-supervised sparse to dense motion segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Kardoost, Amirhossein Ho, Kalun Ochs, Peter Keuper, Margret Data and Web Science Group University of Mannheim Germany Fraunhofer Center Machine Learning Germany Fraunhofer ITWM Competence Center HPC Kaiserslautern Germany Mathematical Optimization Group Saarland University Germany
Observable motion in videos can give rise to the definition of objects moving with respect to the scene. The task of segmenting such moving objects is referred to as motion segmentation and is usually tackled either b... 详细信息
来源: 评论