咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是671-680 订阅
排序:
Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy
arXiv
收藏 引用
arXiv 2024年
作者: Handa, Palak Mahbod, Amirreza Schwarzhans, Florian Woitek, Ramona Goel, Nidhi Dhir, Manas Chhabra, Deepti Jha, Shreshtha Sharma, Pallavi Thakur, Vijay Chawla, Simarpreet Singh Gunjan, Deepak Kakarla, Jagadeesh Raman, Balasubramanian Research Center for Medical Image Analysis and Artificial Intelligence Department of Medicine Danube Private University Krems Austria Department of Electronics and Communication Engineering Indira Gandhi Delhi Technical University for Women Delhi India Department of Artificial Intelligence and Data Sciences Indira Gandhi Delhi Technical University for Women Delhi India Department of Artificial Intelligence and Machine Learning University School of Automation and Robotics Guru Gobind Singh Indraprastha University Delhi India Department of Electronics and Communication Engineering Delhi Technological University Delhi India Columbia University New YorkNY United States Department of Gastroenterology and HNU All India Institute of Medical Sciences Delhi India Chennai Kancheepuram India Department of Computer Science and Engineering Indian Institute of Technology Roorkee India
We present the Capsule Vision 2024 Challenge: Multi-Class Abnormality Classification for Video Capsule Endoscopy. It was virtually organized by the Research Center for Medical Image Analysis and Artificial Intelligenc... 详细信息
来源: 评论
Multi-Task learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives
arXiv
收藏 引用
arXiv 2022年
作者: Behdin, Kayhan Loewinger, Gabriel Kishida, Kenneth T. Parmigiani, Giovanni Mazumder, Rahul MIT Operations Research Center CambridgeMA United States Machine Learning Team National Institute on Mental Health BethesdaMD United States Department of Physiology and Pharmacology Department of Neurosurgery Wake Forest School of Medicine Winston SalemNC United States Department of Biostatistics Harvard School of Public Health BostonMA United States Department of Data Science Dana Farber Cancer Institute BostonMA United States MIT Sloan Schools of Management CambridgeMA United States
We consider a problem in Multi-Task learning (MTL) where multiple linear models are jointly trained on a collection of datasets ("tasks"). A key novelty of our framework is that it allows the sparsity patter... 详细信息
来源: 评论
Improving Cardiovascular Disease Prediction With machine learning Using Mental Health data: A Prospective UK Biobank Study
JACC: Advances
收藏 引用
JACC: Advances 2024年 第9期3卷 101180-101180页
作者: Dorraki, Mohsen Liao, Zhibin Abbott, Derek Psaltis, Peter J. Baker, Emma Bidargaddi, Niranjan Wardill, Hannah R. van den Hengel, Anton Narula, Jagat Verjans, Johan W. School of Computer and Mathematical Sciences The University of Adelaide Adelaide Australia Australian Institute for Machine Learning (AIML) Adelaide Australia Lifelong Health Theme South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia School of Electrical & Electronic Engineering University of Adelaide Adelaide Australia Faculty of Health and Medical Sciences The University of Adelaide Adelaide Australia Department of Cardiology Central Adelaide Local Health Network Adelaide Australia College of Medicine and Public Health Flinders University Adelaide Australia Precision Cancer Medicine Theme South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia School of Biomedicine Faculty of Health and Medical Sciences University of Adelaide Adelaide Australia University of Texas Health Science Center Houston United States
Background: Robust and accurate prediction of cardiovascular disease (CVD) risk facilitates early intervention to benefit patients. The intricate relationship between mental health disorders and CVD is widely recogniz... 详细信息
来源: 评论
Brain Imaging Generation with Latent Diffusion Models
arXiv
收藏 引用
arXiv 2022年
作者: Pinaya, Walter H.L. Tudosiu, Petru-Daniel Dafflon, Jessica Da Costa, Pedro F. Fernandez, Virginia Nachev, Parashkev Ourselin, Sebastien Cardoso, M. Jorge Department of Biomedical Engineering School of Biomedical Engineering & Imaging Sciences King’s College London United Kingdom Data Science and Sharing Team Functional Magnetic Resonance Imaging Facility National Institute of Mental Health BethesdaMD20892 United States Machine Learning Team Functional Magnetic Resonance Imaging Facility National Institute of Mental Health BethesdaMD20892 United States Institute of Psychiatry Psychology & Neuroscience King’s College London United Kingdom Centre for Brain and Cognitive Development Birkbeck College United Kingdom Institute of Neurology University College London United Kingdom
Deep neural networks have brought remarkable breakthroughs in medical image analysis. However, due to their data-hungry nature, the modest dataset sizes in medical imaging projects might be hindering their full potent... 详细信息
来源: 评论
T-Cell Receptor Optimization with Reinforcement learning and Mutation Policies for Precision Immunotherapy
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Ziqi Min, Martin Renqiang Guo, Hongyu Cheng, Chao Clancy, Trevor Ning, Xia Computer Science and Engineering The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs PrincetonNJ08540 United States Digital Technologies Research Centre National Research Council Canada ON Canada Department of Medicine Baylor College of Medicine HoustonTX77030 United States NEC Oncolmmunity AS Oslo Cancer Cluster Innovation Park Ullernchausséen 64 Oslo0379 Norway Biomedical Informatics The Ohio State University ColumbusOH43210 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
T cells monitor the health status of cells by identifying foreign peptides displayed on their surface. T-cell receptors (TCRs), which are protein complexes found on the surface of T cells, are able to bind to these pe... 详细信息
来源: 评论
Correction: Multivariate clustering for maximizing the small cell users’ performance based on the dynamic interference alignment
收藏 引用
Wireless Networks 2023年 第1期30卷 593-593页
作者: Dakshinamoorthy, Prabakar Vaitilingam, Saminadan Sundar, Ramesh Department of Data Science and Business Systems School of Computing College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur India Department of Electronics and Communication Engineering Puducherry Technological University Puducherry India Department of Artificial Intelligence and Machine Learning Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
来源: 评论
OC07.03: Automated cortical analysis from third-dimensional second trimester ultrasound scans
收藏 引用
Ultrasound in Obstetrics & Gynecology 2024年 第S1期64卷 18-18页
作者: M.K. Wyburd I. Consortium M. Jenkinson A. Namburete Computer Science University of Oxford Oxford United Kingdom University of Oxford Nuffield Department of Women's and Reproductive Health Oxford United Kingdom Wellcome Centre for Integrative Neuroimaging FMRIB University of Oxford Oxford United Kingdom Australian Institute for Machine Learning School of Computer and Mathematical Sciences University of Adelaide Adelaide SA Australia
来源: 评论
Toward a 'Standard Model' of machine learning
arXiv
收藏 引用
arXiv 2021年
作者: Hu, Zhiting Xing, Eric P. Halıcıoğlu Data Science Institute University of California San Diego San Diego United States Machine Learning Department Carnegie Mellon University Pittsburgh United States Mohamed bin Zayed University of Artificial Intelligence Abu Dhabi United Arab Emirates Petuum Inc. Pittsburgh United States
machine learning (ML) is about computational methods that enable machines to learn concepts from experience. In handling a wide variety of experience ranging from data instances, knowledge, constraints, to rewards, ad... 详细信息
来源: 评论
Adversarial learning with Cost-Sensitive Classes
arXiv
收藏 引用
arXiv 2021年
作者: Shen, Haojing Chen, Sihong Wang, Ran Wang, Xizhao Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Guangdong Shenzhen518060 China The College of Mathematics and Statistics Shenzhen University Shenzhen518060 China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
It is necessary to improve the performance of some special classes or to particularly protect them from attacks in adversarial learning. This paper proposes a framework combining cost-sensitive classification and adve... 详细信息
来源: 评论
Comparative performance analysis of the resnet backbones of mask RCNN to segment the signs of COVID-19 in chest CT scans
arXiv
收藏 引用
arXiv 2020年
作者: Aleem, Muhammad Raj, Rahul Khan, Arshad Ghulam Ishaq Khan Institute of Engineering Sciences and Technology Topi KPK 23640 Pakistan Independent Researcher Machine Learning in NLP and Computer Vision Data Science professional Southampton United Kingdom
COVID-19 has been detrimental in terms of the number of fatalities and rising number of critical patients across the world. According to the UNDP (United National Development Programme) Socio-Economic programme, aimed... 详细信息
来源: 评论