咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是701-710 订阅
排序:
Sharpening the dark matter signature in gravitational waveforms. II. Numerical simulations
收藏 引用
Physical Review D 2025年 第6期111卷 063071-063071页
作者: Bradley J. Kavanagh Theophanes K. Karydas Gianfranco Bertone Pierfrancesco Di Cintio Mario Pasquato Instituto de Física de Cantabria (IFCA UC-CSIC) Avenue de Los Castros s 39005 Santander Spain Gravitation Astroparticle Physics Amsterdam (GRAPPA) Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi (CNR-ISC) via Madonna del Piano 17 50022 Sesto Fiorentino (FI) Italy INAF-Osservatorio Astronomico di Arcetri Largo Enrico Fermi 5 50125 Firenze Italy INFN-Sezione di Firenze Via Giovanni Sansone 1 50022 Sesto Fiorentino Italy Département de Physique Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Canada Mila—Quebec Artificial Intelligence Institute 6666 Rue Saint-Urbain Montréal Canada Ciela—Montréal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 5 Padova Italy Istituto Nazionale di Fisica Nucleare Padova Via Marzolo 8 Padova Italy
Future gravitational wave observatories can probe dark matter by detecting the dephasing in the waveform of binary black hole mergers induced by dark matter overdensities. Such a detection hinges on the accurate model...
来源: 评论
On Convergence of Federated Averaging Langevin Dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Deng, Wei Zhang, Qian Ma, Yi-An Song, Zhao Lin, Guang Machine Learning Research Morgan Stanley NY United States Department of Statistics Purdue University West LafayetteIN United States Haliciog˜lu Data Science Institute University of California La Jolla San DiegoCA United States Adobe Research San JoseCA United States Department of Mathematics School of Mechanical Engineering Purdue University United States
We propose a federated averaging Langevin algorithm (FA-LD) for uncertainty quantification and mean predictions with distributed clients. In particular, we generalize beyond normal posterior distributions and consider... 详细信息
来源: 评论
Objective frequentist uncertainty quantification for atmospheric CO2 retrievals
arXiv
收藏 引用
arXiv 2020年
作者: Patil, Pratik Kuusela, Mikael Hobbs, Jonathan Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics and Data Science Carnegie Mellon University PittsburghPA15213 United States Jet Propulsion Laboratory California Institute of Technology PasadenaCA91109 United States
The steadily increasing amount of atmospheric carbon dioxide (CO2) is affecting the global climate system and threatening the long-term sustainability of Earth's ecosystem. In order to better understand the source... 详细信息
来源: 评论
End-to-end topographic networks as models of cortical map formation and human visual behaviour
收藏 引用
Nature human behaviour 2025年 2025 Jun 6页
作者: Zejin Lu Adrien Doerig Victoria Bosch Bas Krahmer Daniel Kaiser Radoslaw M Cichy Tim C Kietzmann Machine Learning Group Institute for Cognitive Science Osnabrück University Osnabrück Germany. zekinglu@***. Neural Dynamics of Visual Cognition Group Department of Education and Psychology Freie Universität Berlin Berlin Germany. zekinglu@***. Machine Learning Group Institute for Cognitive Science Osnabrück University Osnabrück Germany. Cognitive Computational Neuroscience Lab Department of Education and Psychology Freie Universität Berlin Berlin Germany. Donders Institute for Brain Cognition and Behaviour Department for Artificial Intelligence Radboud University Nijmegen the Netherlands. Neural Computation Group Mathematical Institute Justus-Liebig-Universität Gießen Gießen Germany. Center for Mind Brain and Behavior Philipps-Universität Marburg and Justus-Liebig-Universität Gießen Marburg Germany. Neural Dynamics of Visual Cognition Group Department of Education and Psychology Freie Universität Berlin Berlin Germany. Machine Learning Group Institute for Cognitive Science Osnabrück University Osnabrück Germany. tim.kietzmann@uni-osnabrueck.de.
A prominent feature of the primate visual system is its topographic organization. For understanding its origins, its computational role and its behavioural implications, computational models are of central importance....
来源: 评论
Weisfeiler and Leman go machine learning: The Story so far
arXiv
收藏 引用
arXiv 2021年
作者: Morris, Christopher Lipman, Yaron Maron, Haggai Rieck, Bastian Kriege, Nils M. Grohe, Martin Fey, Matthias Borgwardt, Karsten Department of Computer Science RWTH Aachen University Aachen Germany Meta AI Research Department of Computer Science and Applied Mathematics Weizmann Institute of Science Rehovot Israel NVIDIA Research Tel Aviv Israel AIDOS Lab Institute of AI for Health Helmholtz Zentrum München and Technical University of Munich Munich Germany Faculty of Computer Science University of Vienna Vienna Austria Research Network Data Science University of Vienna Vienna Austria Kumo.AI Mountain ViewCA United States Machine Learning & Computational Biology Lab Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland
In recent years, algorithms and neural architectures based on the Weisfeiler–Leman algorithm, a well-known heuristic for the graph isomorphism problem, have emerged as a powerful tool for machine learning with graphs... 详细信息
来源: 评论
machine learning Approaches in Polymer science:Progress and Fundamental for a New
收藏 引用
SmartMat 2025年 第1期6卷 102-142页
作者: 482.T.-S.Lin C.W.ColeyH.Mochigaseet al.“Bigsmiles:A Structurally-Based Line Notation for Describing Macromolecules"ACs Central Science 5no.9(2019):1523-1531.483.J.Wu and M.Gu“Perfecting Liquid-State Theories With Machine Intelligence"Journal of Physical Chemistry Letters 14no.47(2023):10545-10552.484.M.Rubinstein and R.H.ColbyPolymer Physics(Oxford University Press2003).485.M.E.DeagenB.Dalle-CortN.J.RebelloT.S.LinD.J.Walshand B.D.Olsen“Machine Translation Between BigSMILES Line Notation and Chemical Structure Diagrams"Macromolecules 57no.1(2023):42-53.486.S.M.McDonaldE.K.AugustineQ.LannersC.RudinL.Catherine Brinsonand M.L.Becker“Applied Machine Learning as a Driver for Polymeric Biomaterials Design"Nature Communications 14no.1(2023):4838.487.B.HuA.Linand L.C.Brinson“Tackling Structured Knowledge Extraction From Polymer Nanocomposite Literature as an NER/RE Task With seq2seq"Integrating Materials and Manufacturing Innovation 13no.3(2024):656-668.488.P.V.CoveneyE.R.Doughertyand R.R.Highfield“Big Data Need Big Theory Too"Philosophical Transactions of the Royal Society A:MathematicalPhysical and Engineering Sciences 374no.2080(2016):201601 489.M.Tang R.ZhangS.Liet al.“Towards a Supertough Thermo-plastic Polyisoprene Elastomer Based on a Biomimic Strategy"Angewandte Chemie International Edition557no.48(2018):15836-15840.490.M.Z.Naser“An Engineer's Guide to Explainable Artificial Intel-ligence and Interpretable Machine Learning:Navigating CausalityForced Goodnessand the False Perception of Inference"Automation in Construction 129(2021):103821 .491.T.K.Patra V.MeenakshisundaramJ.H.Hungand D.S.Simmons“Neural-Network-Biased Genetic Algorithms for Materials Design:Evolutionary Algorithms That LearnACS Combinatorial Science 19no.2(2017):96-107.
machine learning(ML),material genome,and big data approaches are highly overlapped in their strategies,algorithms,and *** can target various definitions,distributions,and correlations of concerned physical parameters ...
来源: 评论
Nuclear Neural Networks: Emulating Late Burning Stages in Core Collapse Supernova Progenitors
arXiv
收藏 引用
arXiv 2025年
作者: Grichener, Aldana Renzo, Mathieu Kerzendorf, Wolfgang E. Farmer, Rob de Mink, Selma E. Bellinger, Earl Patrick Chan, Chi-Kwan Chen, Nutan Farag, Ebraheem Justham, Stephen Steward Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Max Planck Institute for Astrophysics Karl-Schwarzschild-Str. 1 Garching85748 Germany Department of Physics Technion Haifa3200003 Israel Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48824 United States Department of Physics and Astronomy Michigan State University East LansingMI48824 United States Ludwig-Maximilians-Universitat Munchen Geschwister-Scholl-Platz 1 Munchen80539 Germany Department of Astronomy Yale University New HavenCT06511 United States Steward Observatory Department of Astronomy University of Arizona 933 North Cherry Avenue TucsonAZ85721 United States Data Science Institute University of Arizona 1230 N. Cherry Avenue TucsonAZ85721 United States Program in Applied Mathematics University of Arizona 617 North Santa Rita TucsonAZ85721 United States Machine Learning Research Lab Volkswagen AG Munich38440 Germany
One of the main challenges in modeling massive stars to the onset of core collapse is the computational bottleneck of nucleosynthesis during advanced burning stages. The number of isotopes formed requires solving a la... 详细信息
来源: 评论
Cross-population coupling of neural activity based on Gaussian process current source densities
arXiv
收藏 引用
arXiv 2021年
作者: Klein, Natalie Siegle, Joshua H. Teichert, Tobias Kass, Robert E. Department of Statistics and Data Science Carnegie Mellon University PittsburghPA United States Machine Learning Department Carnegie Mellon University PittsburghPA United States MindScope Program Allen Institute SeattleWA United States Department of Psychiatry University of Pittsburgh PittsburghPA United States Department of Bioengineering University of Pittsburgh PittsburghPA United States Neuroscience Institute Carnegie Mellon University PittsburghPA United States
Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, ho... 详细信息
来源: 评论
Automating airborne pollen classification: Identifying and interpreting hard samples for classifiers
收藏 引用
Heliyon 2025年 第2期11卷 e41656页
作者: Milling, Manuel Rampp, Simon D.N. Triantafyllopoulos, Andreas Plaza, Maria P. Brunner, Jens O. Traidl-Hoffmann, Claudia Schuller, Björn W. Damialis, Athanasios CHI – Chair of Health Informatics MRI Technical University of Munich Munich Germany MCML–Munich Center for Machine Learning Germany EIHW – Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Augsburg Germany Institute of Environmental Medicine and Integrative Health Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany Institute of Environmental Medicine Helmholtz Center Munich German Research Center for Environmental Health Germany Faculty of Business and Economics and Faculty of Medicine University of Augsburg Augsburg Germany Department of Technology Management and Economics Technical University of Denmark Denmark Next Generation Technology Region Zealand Denmark Christine Kühne Center for Allergy Research and Education Davos Switzerland MDSI–Munich Data Science Institute Germany GLAM–the Group on Language Audio & Music Imperial College London London United Kingdom Terrestrial Ecology and Climate Change Department of Ecology School of Biology Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece
Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate... 详细信息
来源: 评论
An initiative on digital nephrology: the Kidney Imageomics Project
收藏 引用
National science Review 2025年 第3期 92-96页
作者: Fangxu Zhou Zehua Li Haifeng Li Yao Lu Linjia Cheng Ying Zhang Zichen Wang Jing Nie Heping Cheng Bin Dong Lei Ma Li Yang Renal Division Peking University Institute of Nephrology Peking University First Hospital Key Laboratory of Renal Disease—Ministry of Health of China Key Laboratory of CKD Prevention and Treatment (Peking University)—Ministry of Education of China Peking University First Hospital Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases—Chinese Academy of Medical Sciences Peking University First Hospital National Biomedical Imaging Center College of Future Technology Peking University Beijing International Center for Mathematical Research and the New Cornerstone Science Laboratory Peking University Academy for Advanced Interdisciplinary Studies Peking University State Key Laboratory of Membrane Biology Peking University Institute of Molecular Medicine College of Future Technology Peking University Peking-Tsinghua Center for Life Sciences Peking University Center for Machine Learning Research Peking University KIP Consortium
The kidney's complex structure and functions are essential for *** human kidney contains one million nephrons surrounded by a vast network of peritubular capillaries that support oxygen and nutrients, and an inter...
来源: 评论