咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是711-720 订阅
排序:
Efficient Algorithms for Set-Valued Prediction in Multi-Class Classification
arXiv
收藏 引用
arXiv 2019年
作者: Mortier, Thomas Wydmuch, Marek Dembczyński, Krzysztof Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modelling Ghent University Belgium Institute of Computing Science Poznań University of Technology Poland Intelligent Systems and Machine Learning Universität Paderborn Germany
In cases of uncertainty, a multi-class classifier preferably returns a set of candidate classes instead of predicting a single class label with little guarantee. More precisely, the classifier should strive for an opt... 详细信息
来源: 评论
Confidence intervals uncovered: Are we ready for real-world medical imaging AI?
arXiv
收藏 引用
arXiv 2024年
作者: Christodoulou, Evangelia Reinke, Annika Houhou, Rola Kalinowski, Piotr Erkan, Selen Sudre, Carole H. Burgos, Ninon Boutaj, Sofiène Loizillon, Sophie Solal, Maëlys Rieke, Nicola Cheplygina, Veronika Antonelli, Michela Mayer, Leon D. Tizabi, Minu D. Jorge Cardoso, M. Simpson, Amber Jäger, Paul F. Kopp-Schneider, Annette Varoquaux, Gaël Colliot, Olivier Maier-Hein, Lena Heidelberg Div. Intelligent Medical Systems Germany AI Health Innovation Cluster Germany NCT Heidelberg a partnership between DKFZ Heidelberg University Hospital Germany DKFZ Heidelberg Helmholtz Imaging Germany HIDSS4Health - Helmholtz Information and Data Science School for Health Germany DKFZ Heidelberg Interactive Machine Learning Group Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London United Kingdom Sorbonne Université Institut du Cerveau - Paris Brain Institute - ICM CNRS Inria Inserm AP-HP Hôpital de la Pitié-Salpêtrière France NVIDIA Germany Department of Computer Science IT University of Copenhagen Denmark Centre for Medical Image Computing University College London United Kingdom School of Computing Queen’s University Canada Department of Biomedical and Molecular Sciences Queen’s University Canada Division of Biostatistics DKFZ Germany Parietal project team INRIA Saclay-Île de France France Faculty of Mathematics and Computer Science Heidelberg University Germany Medical Faculty Heidelberg University Germany
Medical imaging is spearheading the AI transformation of healthcare. Performance reporting is key to determine which methods should be translated into clinical practice. Frequently, broad conclusions are simply derive... 详细信息
来源: 评论
Locally differentially private (contextual) bandits learning  20
Locally differentially private (contextual) bandits learning
收藏 引用
Proceedings of the 34th International Conference on Neural Information Processing Systems
作者: Kai Zheng Tianle Cai Weiran Huang Zhenguo Li Liwei Wang Kwai Inc. School of Mathematical Sciences Peking University and Haihua Institute for Frontier Information Technology Huawei Noah's Ark Lab Key Laboratory of Machine Perception MOE School of EECS Peking University and Center for Data Science Peking University
We study locally differentially private (LDP) bandits learning in this paper. First, we propose simple black-box reduction frameworks that can solve a large family of context-free bandits learning problems with LDP gu...
来源: 评论
Cosmological N-body simulations: a challenge for scalable generative models
收藏 引用
Computational Astrophysics and Cosmology 2019年 第1期6卷 1-17页
作者: Perraudin, Nathanaël Srivastava, Ankit Lucchi, Aurelien Kacprzak, Tomasz Hofmann, Thomas Réfrégier, Alexandre Swiss Data Science Center ETH Zurich Zurich Switzerland Institute for Machine Learning ETH Zurich Zurich Switzerland Institute for Particle Physics and Astrophysics ETH Zurich Zurich Switzerland
Deep generative models, such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAs) have been demonstrated to produce images of high visual quality. However, the existing hardware on which these m...
来源: 评论
On the Utility Function of Experiments in Fundamental science
arXiv
收藏 引用
arXiv 2025年
作者: Dorigo, Tommaso Doro, Michele Aehle, Max Gauger, Nicolas R. Awais, Muhammad Izbicki, Rafael Kieseler, Jan Masserano, Luca Nardi, Federico Vergara, Luis Recabarren Luleå University of Technology Laboratorievägen 14 Luleå97187 Sweden INFN - Sezione di Padova via F. Marzolo 8 Padova35131 Italy Universal Scientific Education and Research Network Italy Università di Padova Dipartimento di Fisica e Astronomia "G.Galilei" via F. Marzolo 8 Padova35131 Italy Gottlieb-Daimler-Strase Kaiserslautern67663 Germany Karlsruhe Institute for Technology Kaiserstrase 12 Karlsruhe76131 Germany Laboratoire de Physique de Clermont Auvergne 4 Avenue Blaise Pascal Aubière63170 France Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo" Via Venezia 15 PadovaI-35131 Italy Department of Statistics & Data Science Department of Machine Learning Carnegie Mellon University Pittsburgh United States Department of Statistics Federal University of São Carlos São Carlos Brazil
The majority of experiments in fundamental science today are designed to be multi-purpose: their aim is not simply to measure a single physical quantity or process, but rather to enable increased precision in the meas... 详细信息
来源: 评论
Explaining bayesian neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Bykov, Kirill Höhne, Marina M.-C. Creosteanu, Adelaida Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany Google Research Brain team Berlin Germany Department of Computer Science TU Kaiserslautern Germany Heidelberg Germany Institute of Pathology Charite – Universitätsmedizin Berlin Berlin Germany Aignostics Berlin Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
—To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs’ predictions. These interpretations are usual... 详细信息
来源: 评论
Drone flight data reveal energy and greenhouse gas emissions savings for small package delivery
arXiv
收藏 引用
arXiv 2021年
作者: Rodrigues, Thiago A. Patrikar, Jay Oliveira, Natalia L. Scott Matthews, H. Scherer, Sebastian Samaras, Constantine Department of Civil and Environmental Engineering Carnegie Mellon University 5000 Forbes Avenue PittsburghPA15213 United States Robotics Institute Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States Department of Statistics and Data Science Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States Machine Learning Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh15213 United States
The adoption of Uncrewed Aerial Vehicles (UAVs) for last-mile deliveries will affect the energy productivity of package delivery and require new methods to understand the associated energy consumption and greenhouse g... 详细信息
来源: 评论
Universal patterns of intra-urban morphology: Defining a global typology of the urban fabric using unsupervised clustering
收藏 引用
International Journal of Applied Earth Observation and Geoinformation 2025年 141卷
作者: Henri Debray Matthias Gassilloud Richard Lemoine-Rodríguez Michael Wurm Xiaoxiang Zhu Hannes Taubenböck Institute of Geography and Geology Department of Global Urbanization and Remote Sensing University of Würzburg 97074 Würzburg Germany German Remote Sensing Data Center (DFD) German Aerospace Center (DLR) 82234 Oberpfaffenhofen Germany Data Science in Earth Observation Technical University of Munich (TUM) 80333 Munich Germany Chair of Remote Sensing and Landscape Information Systems University of Freiburg 79106 Freiburg Germany Geolingual Studies Team University of Würzburg Am Hubland 97074 Würzburg Germany Munich Center for Machine Learning 80333 Munich Germany
The physical dimension of cities and its spatial patterns play a crucial role in shaping society and urban dynamics. Understanding the complexity of urban systems requires a detailed assessment of their physical struc...
来源: 评论
BIGDML: Towards exact machine learning force fields for materials
arXiv
收藏 引用
arXiv 2021年
作者: Sauceda, Huziel E. Gálvez-González, Luis E. Chmiela, Stefan Paz-Borbón, Lauro Oliver Müller, Klaus-Robert Tkatchenko, Alexandre Machine Learning Group Technische Universität Berlin Berlin10587 Germany BASLEARN TU Berlin BASF Joint Lab for Machine Learning Technische Universität Berlin Berlin10587 Germany División de Ciencias Exactas y Naturales Universidad de Sonora Blvd. Luis Encinas & Rosales Hermosillo Mexico BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Instituto de Física Universidad Nacional Autónoma de México Apartado Postal 20-364 CDMX01000 Mexico Google Research Brain team Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany Department of Physics and Materials Science University of Luxembourg LuxembourgL-1511 Luxembourg
machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict the... 详细信息
来源: 评论
Adapting to noise distribution shifts in flow-based gravitational-wave inference
arXiv
收藏 引用
arXiv 2022年
作者: Wildberger, Jonas Dax, Maximilian Green, Stephen R. Gair, Jonathan Pürrer, Michael Macke, Jakob H. Buonanno, Alessandra Schölkopf, Bernhard Max Planck Institute for Intelligent Systems Max-Planck-Ring 4 Tübingen72076 Germany School of Mathematical Sciences University of Nottingham University Park NottinghamNG7 2RD United Kingdom Am Mühlenberg 1 Potsdam14476 Germany Department of Physics East Hall University of Rhode Island KingstonRI02881 United States URI Research Computing Tyler Hall University of Rhode Island KingstonRI02881 United States Machine Learning in Science University of Tübingen Tübingen72076 Germany Department of Physics University of Maryland College ParkMD20742 United States
Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative to standard samplers—producing results of comparable accuracy. These approaches (e.g., Dingo) enable amortized i... 详细信息
来源: 评论