咨询与建议

限定检索结果

文献类型

  • 475 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 805 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 502 篇 工学
    • 344 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 116 篇 生物工程
    • 82 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 65 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 55 篇 电气工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 373 篇 理学
    • 187 篇 数学
    • 125 篇 生物学
    • 115 篇 物理学
    • 83 篇 统计学(可授理学、...
    • 52 篇 化学
    • 38 篇 系统科学
    • 17 篇 地球物理学
  • 116 篇 管理学
    • 65 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 55 篇 医学
    • 46 篇 临床医学
    • 41 篇 基础医学(可授医学...
    • 23 篇 药学(可授医学、理...
    • 22 篇 公共卫生与预防医...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 6 篇 教育学
  • 1 篇 文学

主题

  • 47 篇 machine learning
  • 43 篇 deep learning
  • 41 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 16 篇 reinforcement le...
  • 15 篇 support vector m...
  • 15 篇 medical services
  • 15 篇 decision making
  • 15 篇 artificial intel...
  • 15 篇 machine learning...
  • 14 篇 diseases
  • 13 篇 forecasting
  • 12 篇 image segmentati...
  • 11 篇 ethics
  • 10 篇 scalability

机构

  • 47 篇 center for machi...
  • 29 篇 ai for science i...
  • 28 篇 center for data ...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 18 篇 beijing internat...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 10 篇 australian insti...
  • 10 篇 department of ar...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 22 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 montavon grégoir...
  • 11 篇 zhang linfeng
  • 11 篇 dong bin
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 710 篇 英文
  • 92 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
805 条 记 录,以下是731-740 订阅
排序:
Optimal Client Sampling for Federated learning
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Wenlin Horváth, Samuel Richtárik, Peter Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Department of Empirical Inference Max Planck Institute for Intelligent Systems Tübingen72076 Germany Department of Machine Learning Mohamed bin Zayed University of Artificial Intelligence Masdar City Abu Dhabi United Arab Emirates Computer Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology Thuwal23955-6900 Saudi Arabia
It is well understood that client-master communication can be a primary bottleneck in federated learning (FL). In this work, we address this issue with a novel client subsampling scheme, where we restrict the number o... 详细信息
来源: 评论
A multi-objective deep reinforcement learning algorithm for spatio-temporal latency optimization in mobile IoT-enabled edge computing networks
收藏 引用
Simulation Modelling Practice and Theory 2025年 143卷
作者: Parisa Khoshvaght Amir Haider Amir Masoud Rahmani Farhad Soleimanian Gharehchopogh Ferzat Anka Jan Lansky Mehdi Hosseinzadeh Institute of Research and Development Duy Tan University Da Nang Vietnam School of Engineering & Technology Duy Tan University Da Nang Vietnam Centre for Research Impact & Outcome Chitkara University Institute of Engineering and Technology Chitkara University Rajpura 140401 Punjab India Department of AI and Robotics Sejong University Seoul 05006 Republic of Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering Ur. C. Islamic Azad University Urmia Iran Data Science Application and Research Center (VEBIM) Fatih Sultan Mehmet Vakif University Istanbul Türkiye Department of Computer Science and Mathematics Faculty of Economic Studies University of Finance and Administration Prague Czech Republic Pattern Recognition and Machine Learning Laboratory School of Computing Gachon University Seongnam Republic of Korea
The rapid increase in Mobile Internet of Things (IoT) devices requires novel computational frameworks. These frameworks must meet strict latency and energy efficiency requirements in Edge and Mobile Edge Computing (ME...
来源: 评论
Torus graphs for multivariate phase coupling analysis
arXiv
收藏 引用
arXiv 2019年
作者: Klein, Natalie Orellana, Josue Brincat, Scott Miller, Earl K. Kass, Robert E. Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University Center for the Neural Basis of Cognition Carnegie Mellon University University of Pittsburgh Department of Brain and Cognitive Science Massachusetts Institute of Technology
Angular measurements are often modeled as circular random variables, where there are natural circular analogues of moments, including correlation. Because a product of circles is a torus, a d-dimensional vector of cir... 详细信息
来源: 评论
Generative Artificial Intelligence in Healthcare: Ethical Considerations and Assessment Checklist
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yilin Teixayavong, Salinelat Shang, Yuqing Savulescu, Julian Nagaraj, Vaishaanth Miao, Di Mertens, Mayli Wei Ting, Daniel Shu Ling Ong, Jasmine Chiat Liu, Mingxuan Cao, Jiuwen Dunn, Michael Vaughan, Roger Hock Ong, Marcus Eng Sung, Joseph Jao-Yiu Topol, Eric J. Liu, Nan Centre for Quantitative Medicine Duke-NUS Medical School Singapore Singapore Centre for Biomedical Ethics National University of Singapore Singapore Singapore Wellcome Centre for Ethics and Humanities University of Oxford Oxford United Kingdom School of Medicine Imperial College London London United Kingdom Centre for Ethics Department of Philosophy University of Antwerp Antwerp Belgium Antwerp Center on Responsible AI University of Antwerp Antwerp Belgium Singapore Eye Research Institute Singapore National Eye Centre Singapore Singapore SingHealth AI Office Singapore Health Services Singapore Singapore Division of Pharmacy Singapore General Hospital Singapore Singapore Machine Learning and I-Health International Cooperation Base of Zhejiang Province Hangzhou Dianzi University Zhejiang China Artificial Intelligence Institute Hangzhou Dianzi University Zhejiang China Programme in Health Services and Systems Research Duke-NUS Medical School Singapore Singapore Department of Emergency Medicine Singapore General Hospital Singapore Singapore Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore State Key Laboratory of Digestive Disease The Chinese University of Hong Kong Hong Kong Scripps Research Translational Institute Scripps Research La Jolla CA United States Institute of Data Science National University of Singapore Singapore Singapore Centre for Quantitative Medicine Duke-NUS Medical School 8 College Road Singapore169857 Singapore
The widespread use of ChatGPT and other emerging technology powered by generative artificial intelligence (GenAI) has drawn much attention to potential ethical issues, especially in high-stakes applications such as he... 详细信息
来源: 评论
AB0205 A NOVEL METHOD FOR PREDICTING 1-YEAR RETENTION OF ABATACEPT USING machine learning TECHNIQUES: DIRECTIONALITY AND IMPORTANCE OF PREDICTORS
收藏 引用
Annals of the Rheumatic Diseases 2021年 80卷 1127-1128页
作者: R. Alten C. Behar C. Boileau P. Merckaert E. Afari V. Vannier-Moreau S. Connolly A. Najm P.A. Juge A. Rai Y. Elbez K. Lozenski Schlosspark-Klinik University Department of Internal Medicine Rheumatology Berlin Germany Tulsy Co-founder Paris France Excelya N/A Boulogne-Billancourt France Data Revenue GmbH Machine Learning Engineering Department Berlin Germany Private Practice N/A Brunoy France Bristol Myers Squibb Medical Affairs France Rueil-Malmaison France Bristol Myers Squibb Global Drug Development Princeton United States of America University of Glasgow Institute of Infection Immunity and Inflammation College of Medical Veterinary and Life Sciences Glasgow United Kingdom Université de Paris AP-HP Hôpital Bichat Claude-Bernard Department of Rheumatology Paris France Bristol Myers Squibb Global Biometrics and Data Science Princeton United States of America Deepscover Biostatistics Puteaux France Bristol Myers Squibb Immunology and Fibrosis Princeton United States of America
Background: In the ACTION ( NCT02109666 ) study, multivariable Cox proportional hazards regression models showed that the predictors of 1-year retention to abatacept treatment were: patient global pain assessment, cou...
来源: 评论
Nonparametric density estimation with adversarial losses
arXiv
收藏 引用
arXiv 2018年
作者: Singh, Shashank Uppal, Ananya Li, Boyue Li, Chun-Liang Zaheer, Manzil Póczos, Barnabás Machine Learning Department Department of Statistics and Data Science Department of Mathematical Sciences Language Technologies Institute Carnegie Mellon University
We study minimax convergence rates of nonparametric density estimation under a large class of loss functions called "adversarial losses", which, besides classical Lp losses, includes maximum mean discrepancy... 详细信息
来源: 评论
Field-level simulation-based inference of galaxy clustering with convolutional neural networks
收藏 引用
Physical Review D 2024年 第8期109卷 083536-083536页
作者: Pablo Lemos Liam Parker ChangHoon Hahn Shirley Ho Michael Eickenberg Jiamin Hou Elena Massara Chirag Modi Azadeh Moradinezhad Dizgah Bruno Régaldo-Saint Blancard David Spergel Department of Physics Université de Montréal Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal QC H2V 0B3 Canada Mila—Quebec Artificial Intelligence Institute Montréal 6666 Rue Saint-Urbain Montréal QC H2S 3H1 Canada Ciela—Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Physics Princeton University Princeton New Jersey 08544 USA Center for Cosmology and Particle Physics Department of Physics New York University New York New York 10003 USA Department of Physics Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA Center for Computational Mathematics Flatiron Institute 162 5th Avenue New York New York 10010 USA Department of Astronomy University of Florida 211 Bryant Space Science Center Gainesville Florida 32611 USA Max-Planck-Institut für Extraterrestrische Physik Postfach 1312 Giessenbachstrasse 1 85748 Garching bei München Germany Waterloo Centre for Astrophysics University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Department of Physics and Astronomy University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada Département de Physique Théorique Université de Genève 24 quai Ernest Ansermet 1211 Genève 4 Switzerland
We present the first simulation-based inference (SBI) of cosmological parameters from field-level analysis of galaxy clustering. Standard galaxy clustering analyses rely on analyzing summary statistics, such as the po... 详细信息
来源: 评论
machine learning Force Fields
arXiv
收藏 引用
arXiv 2020年
作者: Unke, Oliver T. Chmiela, Stefan Sauceda, Huziel E. Gastegger, Michael Poltavsky, Igor Schütt, Kristof T. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany BASLEARN BASF-TU joint Lab Technische Universität Berlin Berlin10587 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One o... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
Constructing Impactful machine learning Research for Astronomy: Best Practices for Researchers and Reviewers
arXiv
收藏 引用
arXiv 2023年
作者: Huppenkothen, Daniela Ntampaka, Michelle Ho, Matthew Fouesneau, Morgan Nord, Brian Peek, J.E.G. Walmsley, Mike Wu, John F. Avestruz, C. Buck, Tobias Brescia, Massimo Finkbeiner, Douglas P. Goulding, Andy D. Kacprzak, T. Melchior, Peter Pasquato, Mario Ramachandra, Nesar Ting, Yuan-Sen van de Ven, Glenn Villar, Soledad Villar, V.A. Zinger, Elad SRON Netherlands Institute for Space Research Niels Bohrweg 4 Leiden2333CA Netherlands Anton Pannekoek Institute for Astronomy University of Amsterdam Science Park 904 Amsterdam1098 XH Netherlands Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States UMR 7095 98 bis bd Arago ParisF-75014 France Königstuhl 17 HeidelbergD-69117 Germany Fermi National Accelerator Laboratory P. O. Box 500 BataviaIL60510 United States Kavli Institute for Cosmological Physics University of Chicago ChicagoIL60637 United States Department of Astronomy and Astrophysics University of Chicago ChicagoIL60637 United States Jodrell Bank Centre for Astrophysics Department of Physics & Astronomy University of Manchester ManchesterM13 9PL United Kingdom Dunlap Institute for Astronomy & Astrophysics University of Toronto 50 St. George Street TorontoONM5S 3H4 Canada Leinweber Center for Theoretical Physics University of Michigan Ann ArborMI48109 United States Department of Physics University of Michigan Ann ArborMI48109 United States Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 205 Heidelberg69120 Germany Universität Heidelberg Zentrum für Astronomie Institut für Theoretische Astrophysik Albert-Ueberle-Straße 2 Heidelberg69120 Germany Department of Physics "E. Pancini " University Federico II of Napoli Via Cinthia 21 NapoliI-80126 Italy INAF Astronomical Observatory of Capodimonte Salita Moiariello 16 NapoliI-80131 Italy Department of Physics Harvard University 17 Oxford St. CambridgeMA02138 United States Harvard-Smithsonian Center for Astrophysics 60 Garden St. CambridgeMA02138 United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Swiss Data Science Center Paul Scherrer Institute Villigen5303 Switzerland Center for Statistics & Machine Learn
machine learning has rapidly become a tool of choice for the astronomical community. It is being applied across a wide range of wavelengths and problems, from the classification of transients to neural network emulato... 详细信息
来源: 评论