咨询与建议

限定检索结果

文献类型

  • 480 篇 期刊文献
  • 338 篇 会议
  • 1 册 图书

馆藏范围

  • 819 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 514 篇 工学
    • 349 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 122 篇 生物工程
    • 83 篇 信息与通信工程
    • 71 篇 生物医学工程(可授...
    • 68 篇 控制科学与工程
    • 57 篇 电气工程
    • 55 篇 光学工程
    • 48 篇 化学工程与技术
    • 41 篇 电子科学与技术(可...
    • 26 篇 安全科学与工程
    • 21 篇 仪器科学与技术
    • 18 篇 机械工程
    • 17 篇 网络空间安全
    • 16 篇 力学(可授工学、理...
  • 386 篇 理学
    • 192 篇 数学
    • 127 篇 生物学
    • 121 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 58 篇 化学
    • 40 篇 系统科学
    • 17 篇 地球物理学
  • 118 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 53 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 64 篇 医学
    • 53 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 24 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 19 篇 法学
    • 17 篇 社会学
  • 15 篇 经济学
  • 14 篇 农学
  • 8 篇 教育学
  • 1 篇 文学

主题

  • 48 篇 machine learning
  • 44 篇 deep learning
  • 42 篇 accuracy
  • 22 篇 real-time system...
  • 21 篇 feature extracti...
  • 20 篇 predictive model...
  • 20 篇 reviews
  • 18 篇 training
  • 18 篇 convolutional ne...
  • 17 篇 reinforcement le...
  • 16 篇 medical services
  • 16 篇 decision making
  • 16 篇 machine learning...
  • 15 篇 support vector m...
  • 15 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 image segmentati...
  • 13 篇 forecasting
  • 11 篇 deep neural netw...
  • 11 篇 neural networks

机构

  • 50 篇 center for machi...
  • 31 篇 center for data ...
  • 29 篇 ai for science i...
  • 25 篇 school of mathem...
  • 23 篇 munich center fo...
  • 21 篇 beijing internat...
  • 20 篇 australian insti...
  • 18 篇 vector institute...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 munich center fo...
  • 13 篇 center for machi...
  • 13 篇 munich data scie...
  • 12 篇 dp technology
  • 12 篇 machine learning...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 11 篇 department of ar...
  • 11 篇 peking universit...
  • 10 篇 national enginee...

作者

  • 30 篇 weinan e.
  • 22 篇 prateek verma
  • 21 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 16 篇 dong bin
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 13 篇 bin dong
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 11 篇 zhang linfeng
  • 11 篇 montavon grégoir...
  • 11 篇 verma prateek
  • 10 篇 do thanh-toan
  • 10 篇 li zhang
  • 10 篇 abhay tale
  • 10 篇 carneiro gustavo
  • 10 篇 von rudorff guid...
  • 9 篇 swapnil gundewar
  • 8 篇 barhate aditya

语言

  • 658 篇 英文
  • 158 篇 其他
  • 1 篇 中文
检索条件"机构=Mathematical Institute for Machine Learning and Data Science"
819 条 记 录,以下是751-760 订阅
排序:
machine learning Force Fields
arXiv
收藏 引用
arXiv 2020年
作者: Unke, Oliver T. Chmiela, Stefan Sauceda, Huziel E. Gastegger, Michael Poltavsky, Igor Schütt, Kristof T. Tkatchenko, Alexandre Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Berlin10587 Germany Technische Universität Berlin Berlin10623 Germany BASLEARN BASF-TU joint Lab Technische Universität Berlin Berlin10587 Germany Department of Physics and Materials Science University of Luxembourg Luxembourg CityL-1511 Luxembourg BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg Saarbrücken66123 Germany
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One o... 详细信息
来源: 评论
A practical guide to machine learning interatomic potentials – Status and future
arXiv
收藏 引用
arXiv 2025年
作者: Jacobs, Ryan Morgan, Dane Attarian, Siamak Meng, Jun Shen, Chen Wu, Zhenghao Xie, Clare Yijia Yang, Julia H. Artrith, Nongnuch Blaiszik, Ben Ceder, Gerbrand Choudhary, Kamal Csanyi, Gabor Cubuk, Ekin Dogus Deng, Bowen Drautz, Ralf Fu, Xiang Godwin, Jonathan Honavar, Vasant Isayev, Olexandr Johansson, Anders Kozinsky, Boris Martiniani, Stefano Ong, Shyue Ping Poltavsky, Igor Schmidt, K.J. Takamoto, So Thompson, Aidan Westermayr, Julia Wood, Brandon M. Department of Materials Science and Engineering University of Wisconsin-Madison MadisonWI55705 United States Harvard University Center for the Environment Harvard University CambridgeMA02138 United States John A. Paulson School of Engineering and Applied Sciences Harvard University CambridgeMA02138 United States Materials Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Utrecht3584 CG Netherlands Globus University of Chicago ChicagoIL United States Data Science and Learning Division Argonne National Laboratory LemontIL United States Department of Materials Science and Engineering University of California BerkeleyCA94720 United States Materials Sciences Division Lawrence Berkeley National Laboratory CA94720 United States Material Measurement Laboratory National Institute of Standards and Technology GaithersburgMD20899 United States Department of Engineering University of Cambridge CambridgeCB2 1PZ United Kingdom Google DeepMind Mountain ViewCA United States Ruhr-Universität Bochum Bochum44780 Germany Meta United States Orbital Materials London United Kingdom Department of Computer Science and Engineering The Pennsylvania State University University ParkPA United States College of Information Sciences and Technology The Pennsylvania State University University ParkPA United States Artificial Intelligence Research Laboratory The Pennsylvania State University University ParkPA United States Center for Artificial Intelligence Foundations and Scientific Applications The Pennsylvania State University University ParkPA United States Department of Chemistry Mellon College of Science Carnegie Mellon University PittsburghPA15213 United States Computational Biology Department School of Computer Science Carnegie Mellon University PittsburghPA15213 United States Courant Institute of Mathematical Sciences New York University New YorkNY10003 United States Center for Soft Matter Research Department of P
The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The s... 详细信息
来源: 评论
Constructing Impactful machine learning Research for Astronomy: Best Practices for Researchers and Reviewers
arXiv
收藏 引用
arXiv 2023年
作者: Huppenkothen, Daniela Ntampaka, Michelle Ho, Matthew Fouesneau, Morgan Nord, Brian Peek, J.E.G. Walmsley, Mike Wu, John F. Avestruz, C. Buck, Tobias Brescia, Massimo Finkbeiner, Douglas P. Goulding, Andy D. Kacprzak, T. Melchior, Peter Pasquato, Mario Ramachandra, Nesar Ting, Yuan-Sen van de Ven, Glenn Villar, Soledad Villar, V.A. Zinger, Elad SRON Netherlands Institute for Space Research Niels Bohrweg 4 Leiden2333CA Netherlands Anton Pannekoek Institute for Astronomy University of Amsterdam Science Park 904 Amsterdam1098 XH Netherlands Space Telescope Science Institute BaltimoreMD21218 United States Department of Physics & Astronomy Johns Hopkins University BaltimoreMD21218 United States UMR 7095 98 bis bd Arago ParisF-75014 France Königstuhl 17 HeidelbergD-69117 Germany Fermi National Accelerator Laboratory P. O. Box 500 BataviaIL60510 United States Kavli Institute for Cosmological Physics University of Chicago ChicagoIL60637 United States Department of Astronomy and Astrophysics University of Chicago ChicagoIL60637 United States Jodrell Bank Centre for Astrophysics Department of Physics & Astronomy University of Manchester ManchesterM13 9PL United Kingdom Dunlap Institute for Astronomy & Astrophysics University of Toronto 50 St. George Street TorontoONM5S 3H4 Canada Leinweber Center for Theoretical Physics University of Michigan Ann ArborMI48109 United States Department of Physics University of Michigan Ann ArborMI48109 United States Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Im Neuenheimer Feld 205 Heidelberg69120 Germany Universität Heidelberg Zentrum für Astronomie Institut für Theoretische Astrophysik Albert-Ueberle-Straße 2 Heidelberg69120 Germany Department of Physics "E. Pancini " University Federico II of Napoli Via Cinthia 21 NapoliI-80126 Italy INAF Astronomical Observatory of Capodimonte Salita Moiariello 16 NapoliI-80131 Italy Department of Physics Harvard University 17 Oxford St. CambridgeMA02138 United States Harvard-Smithsonian Center for Astrophysics 60 Garden St. CambridgeMA02138 United States Department of Astrophysical Sciences Princeton University PrincetonNJ08544 United States Swiss Data Science Center Paul Scherrer Institute Villigen5303 Switzerland Center for Statistics & Machine Learn
machine learning has rapidly become a tool of choice for the astronomical community. It is being applied across a wide range of wavelengths and problems, from the classification of transients to neural network emulato... 详细信息
来源: 评论
Modern applications of machine learning in quantum sciences
arXiv
收藏 引用
arXiv 2022年
作者: Dawid, Anna Arnold, Julian Requena, Borja Gresch, Alexander Plodzien, Marcin Donatella, Kaelan Nicoli, Kim A. Stornati, Paolo Koch, Rouven Büttner, Miriam Okula, Robert Muñoz–Gil, Gorka Vargas–Hernández, Rodrigo A. Cervera-Lierta, Alba Carrasquilla, Juan Dunjko, Vedran Gabrié, Marylou Huembeli, Patrick van Nieuwenburg, Evert Vicentini, Filippo Wang, Lei Wetzel, Sebastian J. Carleo, Giuseppe Greplová, Eliška Krems, Roman Marquardt, Florian Tomza, Michal Lewenstein, Maciej Dauphin, Alexandre Faculty of Physics University of Warsaw Poland ICFO - Institut de Ciències Fotòniques The Barcelona Institute of Science and Technology Castelldefels Barcelona08860 Spain Center for Computational Quantum Physics Flatiron Institute New York United States Department of Physics University of Basel Switzerland Institute for Theoretical Physics Heinrich Heine University Düsseldorf Germany Institute for Quantum Inspired and Quantum Optimization Hamburg University of Technology Germany Université de Paris CNRS Laboratoire Matériaux et Phénomènes Quantiques France Machine Learning Group Technische Universität Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Applied Physics Aalto University Espoo Finland Institute of Physics Albert-Ludwig University of Freiburg Germany International Centre for Theory of Quantum Technologies University of Gdańsk Poland Department of Algorithms and System Modeling Faculty of Electronics Faculty of Electronics Telecommunications and Informatics Gdańsk University of Technology Poland Institute for Theoretical Physics University of Innsbruck Austria Department of Chemistry University of Toronto Canada Vector Institute for Artificial Intelligence MaRS Centre Toronto Canada Department of Chemistry and Chemical Biology McMaster University Hamilton Canada Barcelona Supercomputing Center Spain LIACS Leiden University Netherlands CMAP École Polytechnique France Switzerland Menten AI Inc. Palo AltoCA United States Niels Bohr Institute Copenhagen Denmark CPHT CNRS École Polytechnique Institut Polytechnique de Paris PalaiseauF-91128 France Beijing National Lab for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing China Songshan Lake Materials Laboratory Dongguan China Perimeter Institute for Theoretical Physics Waterloo Canada Kavli Institute of Nanoscience Delft University of Technology DelftNL-2600 GA Netherlands Department of
In this book, we provide a comprehensive introduction to the most recentadvances in the application of machine learning methods in quantum sciences. Wecover the use of deep learning and kernel methods in supervised, u... 详细信息
来源: 评论
DPA-2: a large atomic model as a multi-task learner
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Duo Liu, Xinzijian Zhang, Xiangyu Zhang, Chengqian Cai, Chun Bi, Hangrui Du, Yiming Qin, Xuejian Peng, Anyang Huang, Jiameng Li, Bowen Shan, Yifan Zeng, Jinzhe Zhang, Yuzhi Liu, Siyuan Li, Yifan Chang, Junhan Wang, Xinyan Zhou, Shuo Liu, Jianchuan Luo, Xiaoshan Wang, Zhenyu Jiang, Wanrun Wu, Jing Yang, Yudi Yang, Jiyuan Yang, Manyi Gong, Fu-Qiang Zhang, Linshuang Shi, Mengchao Dai, Fu-Zhi York, Darrin M. Liu, Shi Zhu, Tong Zhong, Zhicheng Lv, Jian Cheng, Jun Jia, Weile Chen, Mohan Ke, Guolin Weinan, E. Zhang, Linfeng Wang, Han AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing100871 China University of Chinese Academy of Sciences Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo315201 China CAS Key Laboratory of Magnetic Materials and Devices Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of Sciences Ningbo315201 China School of Electronics Engineering and Computer Science Peking University Beijing100871 China Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States Department of Chemistry Princeton University PrincetonNJ08540 United States College of Chemistry and Molecular Engineering Peking University Beijing100871 China Yuanpei College Peking University Beijing100871 China School of Electrical Engineering and Electronic Information Xihua University Chengdu610039 China State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun130012 China Key Laboratory of Material Simulation Methods & Software of Ministry of Education College of Physics Jilin University Changchun130012 China International Center of Future Science Jilin University Changchun130012 China Key Laboratory for Quantum Materials of Zhejiang Province Department of Physics School of Science Westlake University Zhejiang Hangzhou310030 China Atomistic Simulations Italia
The rapid advancements in artificial intelligence (AI) are catalyzing transformative changes in atomic modeling, simulation, and design. AI-driven potential energy models have demonstrated the capability to conduct la... 详细信息
来源: 评论
Evaluating the Accuracy and Reliability of Real-World Digital Mobility Outcomes in Older Adults After Hip Fracture: Cross-Sectional Observational Study
收藏 引用
JMIR Formative Research 2025年 9卷 e67792页
作者: Berge, Martin A. Paraschiv-Ionescu, Anisoara Kirk, Cameron Küderle, Arne Micó-Amigo, Encarna Becker, Clemens Cereatti, Andrea Del Din, Silvia Engdal, Monika Garcia-Aymerich, Judith Grønvik, Karoline B. Hansen, Clint Hausdorff, Jeffrey M. Helbostad, Jorunn L. Jansen, Carl-Philipp Johnsen, Lars Gunnar Klenk, Jochen Koch, Sarah Maetzler, Walter Megaritis, Dimitrios Müller, Arne Rochester, Lynn Schwickert, Lars Taraldsen, Kristin Vereijken, Beatrix Department of Neuromedicine and Movement Science Norwegian University of Science and Technology Trondheim Norway Laboratory of Movement Analysis and Measurement Ecole Polytechnique Federale de Lausanne Lausanne Switzerland Translational and Clinical Research Institute Faculty of Medical Sciences Newcastle University Newcastle Upon Tyne United Kingdom Machine Learning and Data Analytics Lab Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Geriatric Center Medical Faculty Heidelberg Heidelberg University Heidelberg Germany Department of Geriatrics and Rehabilitation Robert Bosch Hospital Stuttgart Germany Department of Electronics and Telecommunications Politecnico di Torino Turin Italy National Institute for Health and Care Research Newcastle Biomedical Research Centre Newcastle University The Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle Upon Tyne United Kingdom Barcelona Institute for Global Health Barcelona Spain Department of Medicine and Life Sciences Universitat Pompeu Fabra Catalonia Barcelona Spain CIBER Epidemiología y Salud Pública Madrid Spain Department of Neurology University Hospital Schleswig-Holstein Kiel University Kiel Germany Center for the Study of Movement Cognition and Mobility Neurological Institute Tel Aviv Medical Center Tel Aviv Israel Department of Physical Therapy Faculty of Medical & Health Sciences Tel Aviv University Tel Aviv Israel Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel Rush Alzheimer’s Disease Center Rush University Medical Center Chicago IL United States Department of Orthopedic Surgery Rush Medical College Rush University Chicago IL United States Department of Orthopaedic Surgery St. Olav’s Hospital Trondheim Norway Institute of Epidemiology and Medical Biometry Ulm University Ulm Germany IB University of Health and Social Sciences Study Centre Stuttgart Stuttgart Germany Department of Sport
Background: Algorithms estimating real-world digital mobility outcomes (DMOs) are increasingly validated in healthy adults and various disease cohorts. However, their accuracy and reliability in older adults after hip... 详细信息
来源: 评论
Epitopedia: identifying molecular mimicry between pathogens and known immune epitopes
收藏 引用
ImmunoInformatics 2023年 9卷
作者: Christian A Balbin Janelle Nunez-Castilla Vitalii Stebliankin Prabin Baral Masrur Sobhan Trevor Cickovski Ananda Mohan Mondal Giri Narasimhan Prem Chapagain Kalai Mathee Jessica Siltberg-Liberles Department of Biological Sciences College of Arts Science and Education Florida International University Miami United States Bioinformatics Research Group (BioRG) Knight Foundation School of Computing and Information Sciences Florida International University Miami United States Department of Physics College of Arts Science and Education Florida International University Miami United States Machine Learning and Data Analytics Group (MLDAG) Knight Foundation School of Computing and Information Sciences Florida International University Miami United States Biomolecular Sciences Institute Florida International University Miami United States Department of Human and Molecular Genetics Herbert Wertheim College of Medicine Florida International University Miami United States
Upon infection, foreign antigenic proteins stimulate the host's immune system to produce antibodies targeting the pathogen. These antibodies bind to regions on the antigen called epitopes. Structural similarity (m...
来源: 评论
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
DeePMD-kit v2: A software package for Deep Potential models
arXiv
收藏 引用
arXiv 2023年
作者: Zeng, Jinzhe Zhang, Duo Lu, Denghui Mo, Pinghui Li, Zeyu Chen, Yixiao Rynik, Marián Huang, Li'ang Li, Ziyao Shi, Shaochen Wang, Yingze Ye, Haotian Tuo, Ping Yang, Jiabin Ding, Ye Li, Yifan Tisi, Davide Zeng, Qiyu Bao, Han Xia, Yu Huang, Jiameng Muraoka, Koki Wang, Yibo Chang, Junhan Yuan, Fengbo Bore, Sigbjørn Løland Cai, Chun Lin, Yinnian Wang, Bo Xu, Jiayan Zhu, Jia-Xin Luo, Chenxing Zhang, Yuzhi Goodall, Rhys E.A. Liang, Wenshuo Singh, Anurag Kumar Yao, Sikai Zhang, Jingchao Wentzcovitch, Renata Han, Jiequn Liu, Jie Jia, Weile York, Darrin M. Weinan, E. Car, Roberto Zhang, Linfeng Wang, Han Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine Department of Chemistry and Chemical Biology Rutgers University PiscatawayNJ08854 United States AI for Science Institute Beijing100080 China DP Technology Beijing100080 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China HEDPS CAPT College of Engineering Peking University Beijing100871 China College of Electrical and Information Engineering Hunan University Changsha China Yuanpei College Peking University Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Department of Experimental Physics Comenius University Mlynská Dolina F2 Bratislava842 48 Slovakia Center for Quantum Information Institute for Interdisciplinary Information Sciences Tsinghua University Beijing100084 China Center for Data Science Peking University Beijing100871 China ByteDance Research Zhonghang Plaza No. 43 North 3rd Ring West Road Haidian District Beijing China College of Chemistry and Molecular Engineering Peking University Beijing100871 China Baidu Inc. Beijing China Key Laboratory of Structural Biology of Zhejiang Province School of Life Sciences Westlake University Zhejiang Hangzhou China Westlake AI Therapeutics Lab Westlake Laboratory of Life Sciences and Biomedicine Zhejiang Hangzhou China Department of Chemistry Princeton University PrincetonNJ08544 United States SISSA Scuola Internazionale Superiore di Studi Avanzati Trieste34136 Italy Laboratory of Computational Science and Modeling Institute of Materials École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland Department of Physics National University of Defense Technology Hunan Changsha410073 China State Key Lab of Processors Institute of Computing Technology Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China School of Electronics Engineerin
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 20... 详细信息
来源: 评论
Beware of "Explanations" of AI
arXiv
收藏 引用
arXiv 2025年
作者: Martens, David Shmueli, Galit Evgeniou, Theodoros Bauer, Kevin Janiesch, Christian Feuerriegel, Stefan Gabel, Sebastian Goethals, Sofie Greene, Travis Klein, Nadja Kraus, Mathias Kühl, Niklas Perlich, Claudia Verbeke, Wouter Zharova, Alona Zschech, Patrick Provost, Foster University of Antwerp Department of Engineering Management Antwerp2000 Belgium National Tsing Hua University Institute of Service Science Hsinchu30013 Taiwan INSEAD Technology and Business Fontainebleau77300 France Goethe University Frankfurt Department of Information Systems Frankfurt60629 Germany TU Dortmund University Department of Computer Science Dortmund44227 Germany LMU Munich Munich Center for Machine Learning Munich80539 Germany Erasmus University Rotterdam School of Management Rotterdam3062 Netherlands Copenhagen Business School Department of Digitalization Copenhagen2000 Denmark Karlsruhe Institute of Technology Scientific Computing Center Karlsruhe76131 Germany University of Regensburg Faculty of Informatics and Data Science Regensburg93053 Germany University of Bayreuth Faculty of Law Business and Economics Bayreuth95440 Germany New York University Department of Technology Operations and Statistics New YorkNY10012 United States KU Leuven Faculty of Economics and Business Leuven3000 Belgium Humboldt-Universität zu Berlin School of Business and Economics Berlin10099 Germany Leipzig University Faculty of Economics and Management Science Leipzig04109 Germany
Understanding the decisions made and actions taken by increasingly complex AI system remains a key challenge. This has led to an expanding field of research in explainable artificial intelligence (XAI), highlighting t...
来源: 评论