咨询与建议

限定检索结果

文献类型

  • 479 篇 期刊文献
  • 376 篇 会议
  • 1 册 图书

馆藏范围

  • 856 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 547 篇 工学
    • 265 篇 计算机科学与技术...
    • 208 篇 软件工程
    • 122 篇 控制科学与工程
    • 94 篇 信息与通信工程
    • 93 篇 电子科学与技术(可...
    • 86 篇 电气工程
    • 71 篇 生物医学工程(可授...
    • 62 篇 生物工程
    • 56 篇 光学工程
    • 44 篇 机械工程
    • 35 篇 动力工程及工程热...
    • 33 篇 仪器科学与技术
    • 33 篇 化学工程与技术
    • 29 篇 材料科学与工程(可...
    • 27 篇 交通运输工程
    • 19 篇 力学(可授工学、理...
    • 19 篇 航空宇航科学与技...
    • 16 篇 核科学与技术
  • 376 篇 理学
    • 155 篇 物理学
    • 136 篇 数学
    • 76 篇 生物学
    • 57 篇 系统科学
    • 42 篇 统计学(可授理学、...
    • 39 篇 化学
  • 117 篇 管理学
    • 76 篇 管理科学与工程(可...
    • 38 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 92 篇 医学
    • 75 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 42 篇 药学(可授医学、理...
  • 14 篇 法学
  • 10 篇 农学
  • 9 篇 经济学
  • 6 篇 教育学
  • 2 篇 军事学
  • 2 篇 艺术学

主题

  • 23 篇 electroencephalo...
  • 15 篇 control systems
  • 13 篇 optimal control
  • 12 篇 computer science
  • 12 篇 deep learning
  • 11 篇 gravitational wa...
  • 11 篇 feature extracti...
  • 10 篇 stochastic proce...
  • 9 篇 support vector m...
  • 9 篇 mobile robots
  • 9 篇 robot sensing sy...
  • 9 篇 uncertainty
  • 9 篇 testing
  • 9 篇 parameter estima...
  • 8 篇 force
  • 8 篇 wireless communi...
  • 8 篇 robots
  • 8 篇 computational mo...
  • 8 篇 predictive model...
  • 8 篇 machine learning

机构

  • 23 篇 engineering rese...
  • 23 篇 school of comput...
  • 21 篇 department of as...
  • 19 篇 department of ph...
  • 16 篇 department of ph...
  • 16 篇 advanced technol...
  • 16 篇 kamioka branch n...
  • 16 篇 institute for pl...
  • 15 篇 infn sezione di ...
  • 15 篇 national tsing h...
  • 15 篇 department of ph...
  • 15 篇 department of ph...
  • 15 篇 scuola di ingegn...
  • 15 篇 king’s college l...
  • 15 篇 department of ph...
  • 15 篇 the university o...
  • 15 篇 infn sezione di ...
  • 15 篇 dipartimento di ...
  • 15 篇 università degli...
  • 15 篇 ligo laboratory ...

作者

  • 17 篇 r. takahashi
  • 17 篇 k. komori
  • 17 篇 t. kajita
  • 17 篇 c. kim
  • 17 篇 t. akutsu
  • 16 篇 s. eguchi
  • 16 篇 t. sawada
  • 16 篇 l.-w. luo
  • 16 篇 g. moreno
  • 16 篇 r. gray
  • 16 篇 h. asada
  • 16 篇 h. tagoshi
  • 15 篇 j. c. bayley
  • 15 篇 t. m. evans
  • 15 篇 f. hellman
  • 15 篇 m. kinley-hanlon
  • 15 篇 t. mcrae
  • 15 篇 a. parisi
  • 15 篇 s. rowan
  • 15 篇 s. m. aronson

语言

  • 762 篇 英文
  • 75 篇 其他
  • 22 篇 中文
  • 1 篇 德文
检索条件"机构=Measurement and Control Engineering Research Center and the Department of Computer Science"
856 条 记 录,以下是551-560 订阅
排序:
Corrigendum to: The TianQin project: current progress on science and technology
收藏 引用
Progress of Theoretical and Experimental Physics 2021年 第5期2021卷
作者: Mei, Jianwei Bai, Yan-Zheng Bao, Jiahui Barausse, Enrico Cai, Lin Canuto, Enrico Cao, Bin Chen, Wei-Ming Chen, Yu Ding, Yan-Wei Duan, Hui-Zong Fan, Huimin Feng, Wen-Fan Fu, Honglin Gao, Qing Gao, TianQuan Gong, Yungui Gou, Xingyu Gu, Chao-Zheng Gu, De-Feng He, Zi-Qi Hendry, Martin Hong, Wei Hu, Xin-Chun Hu, Yi-Ming Hu, Yuexin Huang, Shun-Jia Huang, Xiang-Qing Jiang, Qinghua Jiang, Yuan-Ze Jiang, Yun Jiang, Zhen Jin, Hong-Ming Korol, Valeriya Li, Hong-Yin Li, Ming Li, Pengcheng Li, Rongwang Li, Yuqiang Li, Zhu Li, Zhulian Li, Zhu-Xi Liang, Yu-Rong Liang, Zheng-Cheng Liao, Fang-Jie Liu, Qi Liu, Shuai Liu, Yan-Chong Liu, Li Liu, Pei-Bo Liu, Xuhui Liu, Yuan Lu, Xiong-Fei Lu, Yang Lu, Ze-Huang Luo, Yan Luo, Zhi-Cai Milyukov, Vadim Ming, Min Pi, Xiaoyu Qin, Chenggang Qu, Shao-Bo Sesana, Alberto Shao, Chenggang Shi, Changfu Su, Wei Tan, Ding-Yin Tan, Yujie Tan, Zhuangbin Tu, Liang-Cheng Wang, Bin Wang, Cheng-Rui Wang, Fengbin Wang, Guan-Fang Wang, Haitian Wang, Jian Wang, Lijiao Wang, Panpan Wang, Xudong Wang, Yan Wang, Yi-Fan Wei, Ran Wu, Shu-Chao Xiao, Chun-Yu Xu, Xiao-Shi Xue, Chao Yang, Fang-Chao Yang, Liang Yang, Ming-Lin Yang, Shan-Qing Ye, Bobing Yeh, Hsien-Chi Yu, Shenghua Zhai, Dongsheng Zhang, Caishi Zhang, Haitao Zhang, Jian-dong Zhang, Jie Zhang, Lihua Zhang, Xin Zhang, Xuefeng Zhou, Hao Zhou, Ming-Yue Zhou, Ze-Bing Zhu, Dong-Dong Zi, Tie-Guang Luo, Jun TianQin Research Center for Gravitational Physics & School of Physics and Astronomy Sun Yat-sen University (Zhuhai Campus) Zhuhai 519082 P.R. China Centre for Gravitational Experiments School of Physics MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics PGMF Huazhong University of Science and Technology Wuhan 430074 P.R. China SISSA Via Bonomea 265 34136 Trieste Italy and INFN Sezione di Trieste & IFPU – Institute for Fundamental Physics of the Universe Via Beirut 2 34014 Trieste Italy Former Faculty Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino Italy Yunnan Observatories Chinese Academy of Sciences Kunming 650011 China School of Physical Science and Technology Southwest University Chongqing 400715 China Beijing Institute of Control Engineering Beijing 100094 P.R. China SUPA School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ UK DFH Satellite Co. Ltd. Beijing 100094 P.R. China National Astronomical Observatories Chinese Academy of Sciences Beijing 100012 China School of Astronomy and Space Science University of Chinese Academy of Sciences Beijing 100049 China School of Physics and Astronomy University of Birmingham Birmingham B15 2TT United Kingdom Center for High Energy Physics & Department of Physics and State Key Laboratory of Nuclear Physics and Technology Peking University No. 5 Yiheyuan Rd Beijing 100871 P.R. China Lomonosov Moscow State University Sternberg Astronomical Institute Moscow 119992 Russia Dipartimento di Fisica “G. Occhialini” Universitá degli Studi Milano Bicocca Piazza della Scienza 3 I-20126 Milano Italy School of Aeronautics and Astronautics Shanghai Jiao Tong University Shanghai 200240 China Purple Mountain Observatory Chinese Academy of Sciences Nanjing 210023 & School of Astronomy and Space Science University of Science and Technology of China Hefei Anhui 230026 P.R. China Max-Planck-Institut für Gravitationsphysik (Al
来源: 评论
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
arXiv
收藏 引用
arXiv 2018年
作者: Bakas, Spyridon Reyes, Mauricio Jakab, Andras Bauer, Stefan Rempfler, Markus Crimi, Alessandro Shinohara, Russell Takeshi Berger, Christoph Ha, Sung Min Rozycki, Martin Prastawa, Marcel Alberts, Esther Lipkova, Jana Freymann, John Kirby, Justin Bilello, Michel Fathallah-Shaykh, Hassan M. Wiest, Roland Kirschke, Jan Wiestler, Benedikt Colen, Rivka Kotrotsou, Aikaterini Lamontagne, Pamela Marcus, Daniel Milchenko, Mikhail Nazeri, Arash Weber, Marc-Andr Mahajan, Abhishek Baid, Ujjwal Gerstner, Elizabeth Kwon, Dongjin Acharya, Gagan Agarwal, Manu Alam, Mahbubul Albiol, Alberto Albiol, Antonio Albiol, Francisco J. Alex, Varghese Allinson, Nigel Amorim, Pedro H.A. Amrutkar, Abhijit Anand, Ganesh Andermatt, Simon Arbel, Tal Arbelaez, Pablo Avery, Aaron Azmat, Muneeza Pranjal, B. Bai, Wenjia Banerjee, Subhashis Barth, Bill Batchelder, Thomas Batmanghelich, Kayhan Battistella, Enzo Beers, Andrew Belyaev, Mikhail Bendszus, Martin Benson, Eze Bernal, Jose Bharath, Halandur Nagaraja Biros, George Bisdas, Sotirios Brown, James Cabezas, Mariano Cao, Shilei Cardoso, Jorge M. Carver, Eric N. Casamitjana, Adri Castillo, Laura Silvana Cat, Marcel Cattin, Philippe Cérigues, Albert Chagas, Vinicius S. Chandra, Siddhartha Chang, Yi-Ju Chang, Shiyu Chang, Ken Chazalon, Joseph Chen, Shengcong Chen, Wei Chen, Jefferson W. Chen, Zhaolin Cheng, Kun Choudhury, Ahana Roy Chylla, Roger Clrigues, Albert Colleman, Steven Colmeiro, Ramiro German Rodriguez Combalia, Marc Costa, Anthony Cui, Xiaomeng Dai, Zhenzhen Dai, Lutao Daza, Laura Alexandra Deutsch, Eric Ding, Changxing Dong, Chao Dong, Shidu Dudzik, Wojciech Eaton-Rosen, Zach Egan, Gary Escudero, Guilherme Estienne, Tho Everson, Richard Fabrizio, Jonathan Fan, Yong Fang, Longwei Feng, Xue Ferrante, Enzo Fidon, Lucas Fischer, Martin French, Andrew P. Fridman, Naomi Fu, Huan Fuentes, David Gao, Yaozong Gates, Evan Gering, David Gholami, Amir Gierke, Willi Glocker, Ben Gong, Mingming Gonzlez-Vill, Sandra Grosges, T. Guan, Yuanfang Guo, Sheng Gupta, Sudeep Han, Woo-Sup Han, Il Song Harmuth, Ko Center for Biomedical Image Computing and Analytics University of Pennsylvania PhiladelphiaPA United States Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Institute for Surgical Technology and Biomechanics University of Bern Bern Switzerland Center for MR-Research University Children's Hospital Zurich Zurich Switzerland Support Centre for Advanced Neuroimaging Inselspital Institute for Diagnostic and Interventional Neuroradiology Bern University Hospital Bern Switzerland University Hospital of Zurich Zurich Switzerland Center for Clinical Epidemiology and Biostatistics University of Pennsylvania Philadelphia United States Image-Based Biomedical Modeling Group Technical University of Munich Munich Germany Icahn School of Medicine Mount Sinai Health System New YorkNY United States Leidos Biomedical Research Inc. Frederick National Laboratory for Cancer Research FrederickMD21701 United States Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD20814 United States Department of Neurology University of Alabama at Birmingham BirminghamAL United States Department of Diagnostic Radiology University of Texas MD Anderson Cancer Center HoustonTX United States Department of Psychology Washington University St. LouisMO United States Neuroimaging Informatics and Analysis Center Washington University St. LouisMO United States Department of Radiology Washington University St. LouisMO United States Institute of Diagnostic and Interventional Radiology Pediatric Radiology and Neuroradiology University Medical Center Rostock Ernst-Heydemann-Str. 6 Rostock18057 Germany Tata Memorial Centre Homi Bhabha National Institute Mumbai India Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India NVIDIA Santa Clara
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrot... 详细信息
来源: 评论
Joint hierarchical category structure learning and large-scale image classification
arXiv
收藏 引用
arXiv 2017年
作者: Qu, Yanyun Lin, Li Shen, Fumin Lu, Chang Wu, Yang Xie, Yuan Tao, Dacheng Department of Computer Science Xiamen University Xiamen361005 China School of Computer Science and Engineering University of Electric Science and technology of China Chengdu611731 China Institute for Research Initiatives Nara Institute of Science and Technology Japan Research Center of Precision Sensing and Control Institute of Automation Chinese Academy of Sciences Beijing100190 China Centre for Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney 81 Broadway Street UltimoNSW2007 Australia
—We investigate the scalable image classification problem with a large number of categories. Hierarchical visual data structures are helpful for improving the efficiency and performance of large-scale multi-class cla... 详细信息
来源: 评论
Ultra-thin, High-efficiency Mid-Infrared Transmissive Huygens Meta-Optics
arXiv
收藏 引用
arXiv 2017年
作者: Zheng, Hanyu Ding, Jun Zhang, Li An, Sensong Lin, Hongtao Zheng, Bowen Du, Qingyang Yin, Gufan Michon, Jerome Zhang, Yifei Fang, Zhuoran Deng, Longjiang Gu, Tian Zhang, Hualiang Hu, Juejun State Key Laboratory of Electronic Thin Films and Integrated Devices National Engineering Research Center of Electromagnetic Radiation Control Materials University of Electronic Science and Technology of China ChengduSichuan China Department of Materials Science & Engineering Massachusetts Institute of Technology CambridgeMA United States Department of Electrical & Computer Engineering University of Massachusetts Lowell LowellMA United States
The mid-infrared (mid-IR) is a strategically important band for numerous applications ranging from night vision to biochemical sensing. Unlike visible or near-infrared optical parts which are commonplace and economica... 详细信息
来源: 评论
Satellite-relayed intercontinental quantum network
arXiv
收藏 引用
arXiv 2018年
作者: Liao, Sheng-Kai Cai, Wen-Qi Handsteiner, Johannes Liu, Bo Yin, Juan Zhang, Liang Rauch, Dominik Fink, Matthias Ren, Ji-Gang Liu, Wei-Yue Li, Yang Shen, Qi Cao, Yuan Li, Feng-Zhi Wang, Jian-Feng Huang, Yong-Mei Deng, Lei Xi, Tao Ma, Lu Hu, Tai Li, Li Liu, Nai-Le Koidl, Franz Wang, Peiyuan Chen, Yu-Ao Wang, Xiang-Bin Steindorfer, Michael Kirchner, Georg Lu, Chao-Yang Shu, Rong Ursin, Rupert Scheidl, Thomas Peng, Cheng-Zhi Wang, Jian-Yu Zeilinger, Anton Pan, Jian-Wei Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics University of Science and Technology of China Hefei230026 China Center for Excellence Synergetic Innovation Center in Quantum Information and Quantum Physics University of Science and Technology of China Shanghai201315 China Vienna Center for Quantum Science and Technology Faculty of Physics University of Vienna Vienna1090 Austria Institute for Quantum Optics and Quantum Information Austrian Academy of Sciences Vienna1090 Austria School of Computer National University of Defense Technology Changsha410073 China Key Laboratory of Space Active Opto-Electronic Technology Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai200083 China National Astronomical Observatories Chinese Academy of Sciences Beijing100012 China Key Laboratory of Optical Engineering Institute of Optics and Electronics Chinese Academy of Sciences Chengdu610209 Shanghai Engineering Center for Microsatellites Shanghai201203 China State Key Laboratory of Astronautic Dynamics Xi'an Satellite Control Center Xi’an710061 China Xinjiang Astronomical Observatory Chinese Academy of Sciences Urumqi830011 China National Space Science Center Chinese Academy of Sciences Beijing100080 China Space Research Institute Austrian Academy of Sciences Graz8042 Austria
We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ~kHz rate p... 详细信息
来源: 评论
Event-triggered communication and control of networked systems for multi-agent consensus
arXiv
收藏 引用
arXiv 2017年
作者: Nowzari, Cameron Garcia, Eloy Cortés, Jorge Department of Electrical and Computer Engineering George Mason University FairfaxVA22030 United States Control Science Center of Excellence Air Force Research Laboratory Wright-Patterson AFBOH45433 United States Department of Mechanical and Aerospace Engineering University of California San DiegoCA92093 United States
This article provides an introduction to event-triggered coordination for multi-agent average consensus. We provide a comprehensive account of the motivations behind the use of event-triggered strategies for consensus... 详细信息
来源: 评论
Driving fatigue prediction with pre-event electroencephalography (EEG) via a recurrent fuzzy neural network
Driving fatigue prediction with pre-event electroencephalogr...
收藏 引用
2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016
作者: Liu, Yu-Ting Wu, Shang-Lin Chou, Kuang-Pen Lin, Yang-Yin Lu, Jie Zhang, Guangquan Lin, Wen-Chieh Lin, Chin-Teng Institute of Electrical Control Engineering Taiwan Brain Research Center Taiwan Institute of Computer Science and Engineering Taiwan Department of Computer Science National Chiao-Tung University Hsinchu Taiwan Taoyuan Taiwan Faculty of Engineering and Information Technology University of Technology Sydney Sydney Australia
We propose an electroencephalography (EEG) prediction system based on a recurrent fuzzy neural network (RFNN) architecture to assess drivers' fatigue degrees during a virtual-reality (VR) dynamic driving environme... 详细信息
来源: 评论
Distributed kalman filter in a network of linear dynamical systems
arXiv
收藏 引用
arXiv 2017年
作者: Marelli, Damián Zamani, Mohsen Fu, Minyue Department of Control Science and Engineering State Key Laboratory of Industrial Control Technology Zhejiang University 388 Yuhangtang Road Hangzhou Zhejiang Province310058 French-Argentinean International Center for Information and Systems Sciences National Scientific and Technical Research Council Ocampo Esmeralda Rosario2000 Argentina School of Electrical Engineering and Computer Science University of Newcastle University Drive CallaghanNSW2308 Australia
This paper is concerned with the problem of distributed Kalman filtering in a network of interconnected subsystems with distributed control protocols. We consider networks, which can be either homogeneous or heterogen... 详细信息
来源: 评论
Non-linear feature extraction from HRV signal for mortality prediction of ICU cardiovascular patient
收藏 引用
Journal of Medical engineering and Technology 2016年 第3期40卷 87-98页
作者: Moridani, Mohammad Karimi Setarehdan, Seyed Kamaledin Motie Nasrabadi, Ali Hajinasrollah, Esmaeil Department of Biomedical Engineering Science and Research Branch Islamic Azad University Tehran Iran Control and Intelligent Processing Centre of Excellence School of Electrical and Computer Engineering College of Engineering University of Tehran Tehran Iran Departments of Biomedical Engineering Shahed University Tehran Iran Loghman Medical Center Shahid Beheshti University of Medical Sciences Tehran Iran
Intensive care unit (ICU) patients are at risk of in-ICU morbidities and mortality, making specific systems for identifying at-risk patients a necessity for improving clinical care. This study presents a new method fo... 详细信息
来源: 评论
Learning policies for Markov decision processes from data
arXiv
收藏 引用
arXiv 2017年
作者: Hanawal, Manjesh K. Liu, Hao Zhu, Henghui Paschalidis, Ioannis Ch. Industrial Engineering and Operations Research IIT-Bombay PowaiMH 400076 India Center for Information and Systems Engineering Boston University BostonMA02215 United States College of Control Science and Engineering Zhejiang University Hangzhou Zhejiang310027 China Department of Electrical and Computer Engineering Division of Systems Engineering Boston University BostonMA02215 United States
We consider the problem of learning a policy for a Markov decision process consistent with data captured on the state-actions pairs followed by the policy. We assume that the policy belongs to a class of parameterized... 详细信息
来源: 评论