咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 10 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 工学
    • 8 篇 生物工程
    • 7 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 6 篇 信息与通信工程
    • 3 篇 光学工程
    • 3 篇 生物医学工程(可授...
    • 1 篇 化学工程与技术
  • 8 篇 理学
    • 8 篇 生物学
    • 3 篇 物理学
    • 2 篇 数学
    • 1 篇 化学

主题

  • 2 篇 network architec...
  • 2 篇 convolutional ne...
  • 1 篇 image enhancemen...
  • 1 篇 semantic segment...
  • 1 篇 deep neural netw...
  • 1 篇 self-supervised ...
  • 1 篇 recovery

机构

  • 7 篇 shenzhen key lab...
  • 6 篇 bio-computing re...
  • 5 篇 school of comput...
  • 4 篇 department of el...
  • 4 篇 peng cheng labor...
  • 2 篇 mianyang visual ...
  • 1 篇 department of co...
  • 1 篇 university of ox...
  • 1 篇 the school of co...
  • 1 篇 school of comput...
  • 1 篇 shenzhen institu...
  • 1 篇 department of el...
  • 1 篇 the department o...
  • 1 篇 the peng cheng l...
  • 1 篇 school of engine...
  • 1 篇 department of co...
  • 1 篇 the bio-computin...
  • 1 篇 tsinghua shenzhe...
  • 1 篇 school of comput...
  • 1 篇 the shenzhen ins...

作者

  • 6 篇 xu yong
  • 5 篇 tian chunwei
  • 5 篇 lin chia-wen
  • 5 篇 zuo wangmeng
  • 2 篇 chen chen
  • 2 篇 ma chao
  • 2 篇 wu zhihao
  • 2 篇 wang ziyang
  • 2 篇 zhang david
  • 2 篇 zhuge ruibin
  • 1 篇 lin ailiang
  • 1 篇 wu lintai
  • 1 篇 cheng xianjing
  • 1 篇 guo tao
  • 1 篇 tianshu liu
  • 1 篇 liu yang
  • 1 篇 fei lunke
  • 1 篇 mengmeng yang
  • 1 篇 zheng wenxian
  • 1 篇 hou junhui

语言

  • 7 篇 英文
  • 3 篇 其他
检索条件"机构=Mianyang Visual Object Detection and Recognition Engineering Center"
10 条 记 录,以下是1-10 订阅
排序:
VMambaMorph: A visual Mamba-based Framework with Cross-Scan Module for Deformable 3D Image Registration
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Ziyang Zheng, Jian-Qing Ma, Chao Guo, Tao University of Oxford United Kingdom Mianyang Visual Object Detection and Recognition Engineering Center China
Image registration, a critical process in medical imaging, involves aligning different sets of medical imaging data into a single unified coordinate system. Deep learning networks, such as the Convolutional Neural Net... 详细信息
来源: 评论
Weak-Mamba-UNet: visual Mamba Makes CNN and ViT Work Better for Scribble-based Medical Image Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Ziyang Ma, Chao Department of Computer Science University of Oxford United Kingdom Mianyang Visual Object Detection and Recognition Engineering Center China
Medical image segmentation is increasingly reliant on deep learning techniques, yet the promising performance often come with high annotation costs. This paper introduces Weak-Mamba-UNet, an innovative weakly-supervis... 详细信息
来源: 评论
Highway Obstacle detection Method Based on PP-YOLOv2
Highway Obstacle Detection Method Based on PP-YOLOv2
收藏 引用
International Conference on Network and Information Systems for Computers (ICNISC)
作者: Limei Zhao Luofeng Jiang Liu Yang Fei Yang Mengmeng Yang Tianshu Liu Mianyang Polytechnic Mianyang Visual Target Detection and Recognition Engineering Technology Research Center Mianyang China
In order to solve the problem that obstacles on the highway cannot be identified in time for warning and lead to traffic accidents, this paper uses PP-YOLOv2 target detection algorithm to effectively identify and clas...
来源: 评论
Self-supervised 3D Point Cloud Completion via Multi-view Adversarial Learning
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Lintai Cheng, Xianjing Xu, Yong Zeng, Huanqiang Hou, Junhui Bio-Computing Research Center Harbin Institute of Technology Shenzhen Guangdong Shenzhen518055 China The Department of Computer Science City University of Hong Kong Hong Kong School of Computer Science and Technology Harbin Institute of Technology Shenzhen Guangdong Shenzhen518055 China Department of Computer Science City University of Hong Kong Hong Kong Shenzhen Key Laboratory of Visual Object Detection and Recognition Guangdong Shenzhen518055 China School of Engineering Huaqiao University Quanzhou362021 China School of Information Science and Engineering Huaqiao University Xiamen361021 China
In real-world scenarios, scanned point clouds are often incomplete due to occlusion issues. The task of self-supervised point cloud completion involves reconstructing missing regions of these incomplete objects withou... 详细信息
来源: 评论
DS-TransUNet: Dual swin transformer U-net for medical image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Lin, Ailiang Chen, Bingzhi Xu, Jiayu Zhang, Zheng Lu, Guangming Shenzhen Medical Biometrics Perception and Analysis Engineering Laboratory Harbin Institute of Technology Shenzhen518055 China Bio-Computing Research Center Harbin Institute of Technology Shenzhen518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen518055 China
Automatic medical image segmentation has made great progress benefit from the development of deep learning. However, most existing methods are based on convolutional neural networks (CNNs), which fail to build long-ra... 详细信息
来源: 评论
Asymmetric CNN for image super-resolution
arXiv
收藏 引用
arXiv 2021年
作者: Tian, Chunwei Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Zhang, David The Bio-Computing Research Center Harbin Institute of Technology ShenzhenShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China The School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China The Peng Cheng Laboratory ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan ShenzhenGuangdong518172 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years. According to nature of different applications, designing appropriate CNN architectures is developed. Ho... 详细信息
来源: 评论
Lightweight Image Super-Resolution with Enhanced CNN
arXiv
收藏 引用
arXiv 2020年
作者: Tian, Chunwei Zhuge, Ruibin Wu, Zhihao Xu, Yong Zuo, Wangmeng Chen, Chen Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory ShenzhenGuangdong518055 China School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China Department of Electrical and Computer Engineering University of North Carolina CharlotteNC28223 United States Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters u... 详细信息
来源: 评论
Lightweight Image Super-Resolution with Enhanced CNN
arXiv
收藏 引用
arXiv 2020年
作者: Tian, Chunwei Zhuge, Ruibin Wu, Zhihao Xu, Yong Zuo, Wangmeng Chen, Chen Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen ShenzhenGuangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory ShenzhenGuangdong518055 China School of Computer Science and Technology Harbin Institute of Technology HarbinHeilongjiang150001 China Department of Electrical and Computer Engineering University of North Carolina at Charlotte NC28223 United States Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts of convolutions and parameters u... 详细信息
来源: 评论
Designing and Training of A Dual CNN for Image Denoising
arXiv
收藏 引用
arXiv 2020年
作者: Zuo, Wangmeng Zhang, David Lin, Chia-Wen Xu, Yong Tian, Chunwei Du, Bo Bio-Computing Research Center Harbin Institute of Technology Shenzhen China Shenzhen Key Laboratory of Visual Object Detection and Recognition ShenzhenGuangdong518055 China Peng Cheng Laboratory Shenzhen518055 China School of Computer Science and Technology Harbin Institute of Technology 150001 HarbinHeilongjiang China Peng Cheng Laboratory Shenzhen518055 China School of Computer Science Wuhan University 430072 WuhanHubei China Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan 518172 ShenzhenGuangdong China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China
Deep convolutional neural networks (CNNs) for image denoising have recently attracted increasing research interest. However, plain networks cannot recover fine details for a complex task, such as real noisy images. In... 详细信息
来源: 评论
Deep learning on image denoising: An overview
arXiv
收藏 引用
arXiv 2019年
作者: Tian, Chunwei Fei, Lunke Zheng, Wenxian Xu, Yong Zuo, Wangmeng Lin, Chia-Wen Bio-Computing Research Center Harbin Institute of Technology Shenzhen Shenzhen Guangdong518055 China Shenzhen Key Laboratory of Visual Object Detection and Recognition Shenzhen Guangdong518055 China School of Computers Guangdong University of Technology Guangzhou Guangdong510006 China Tsinghua Shenzhen International Graduate School Shenzhen Guangdong518055 China Peng Cheng Laboratory Shenzhen Guangdong518055 China School of Computer Science and Technology Harbin Institute of Technology Harbin Heilongjiang150001 China Department of Electrical Engineering Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan
Deep learning techniques have obtained much attention in image denoising. However, deep learning methods of different types deal with the noise have enormous differences. Specifically, discriminative learning based on... 详细信息
来源: 评论