咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 3 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 1 篇 水利工程
    • 1 篇 生物工程
  • 2 篇 理学
    • 1 篇 大气科学
    • 1 篇 生物学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 1 篇 object detection
  • 1 篇 generative adver...
  • 1 篇 geostationary sa...
  • 1 篇 embeddings
  • 1 篇 sociology

机构

  • 2 篇 microsoft ai dev...
  • 1 篇 google ca united...
  • 1 篇 soundararajan sr...
  • 1 篇 microsoft azure ...
  • 1 篇 human-computer i...
  • 1 篇 google deepmind ...
  • 1 篇 computer science...
  • 1 篇 microsoft corp m...
  • 1 篇 the information ...
  • 1 篇 princeton univer...
  • 1 篇 microsoft united...
  • 1 篇 school of inform...
  • 1 篇 azure iot tsi rn...
  • 1 篇 j.p. morgan ai r...
  • 1 篇 microsoft ai dev...
  • 1 篇 microsoft applie...
  • 1 篇 carnegie mellon ...
  • 1 篇 microsoft applie...
  • 1 篇 university of wa...
  • 1 篇 microsoft ai dev...

作者

  • 1 篇 wood kimberly m.
  • 1 篇 monroy-hernández...
  • 1 篇 li yang
  • 1 篇 tsvetkovz yulia
  • 1 篇 matiach ilya
  • 1 篇 raghunathan suda...
  • 1 篇 karine ip
  • 1 篇 desai anuj
  • 1 篇 yang diyi
  • 1 篇 liu xiaoyan
  • 1 篇 cochrane courtne...
  • 1 篇 abhijith asok
  • 1 篇 yijia xu
  • 1 篇 pouyanfar samira
  • 1 篇 mitra tanushree
  • 1 篇 thigpen minsoo
  • 1 篇 hearst marti
  • 1 篇 raman anand
  • 1 篇 roman batoukov
  • 1 篇 rosenblatt lucas

语言

  • 5 篇 英文
  • 1 篇 其他
检索条件"机构=Microsoft AI Development Acceleration Program"
6 条 记 录,以下是1-10 订阅
排序:
Structural Forecasting for Short-term Tropical Cyclone Intensity Guidance
arXiv
收藏 引用
arXiv 2022年
作者: McNeely, Trey Khokhlov, Pavel Dalmasso, Niccolò Wood, Kimberly M. Lee, Ann B. Carnegie Mellon University Department of Statistics and Data Science United States J.P. Morgan AI Research Mississippi State University Department of Geosciences United States Microsoft AI Development Acceleration Program
Because geostationary satellite (Geo) imagery provides a high temporal resolution window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-term probabilistic forecasts of TC... 详细信息
来源: 评论
Differentially private synthetic data: Applied evaluations and enhancements
arXiv
收藏 引用
arXiv 2020年
作者: Rosenblatt, Lucas Liu, Xiaoyan Pouyanfar, Samira de Leon, Eduardo Desai, Anuj Allen, Joshua Microsoft United States Microsoft AI Development and Acceleration Program United States
Machine learning practitioners frequently seek to leverage the most informative available data, without violating the data owner’s privacy, when building predictive models. Differentially private data synthesis prote... 详细信息
来源: 评论
Bidirectional Human-ai Alignment: Emerging Challenges and Opportunities
Bidirectional Human-AI Alignment: Emerging Challenges and Op...
收藏 引用
2025 CHI Conference on Human Factors in Computing Systems, CHI EA 2025
作者: Shen, Hua Knearem, Tiffany Ghosh, Reshmi Liu, Michael Xieyang Monroy-Hernández, Andrés Wu, Tongshuang Yang, Diyi Huang, Yun Mitra, Tanushree Li, Yang Hearst, Marti The Information School University of Washington SeattleWA United States Google San FranciscoCA United States Microsoft Corp Microsoft AI Development Acceleration Program CambridgeMA United States Google DeepMind PittsburghPA United States Princeton University PrincetonNJ United States Human-Computer Interaction Institute Carnegie Mellon University PittsburghPA United States Computer Science Department Stanford University StanfordCA United States School of Information Sciences University of Illinois at Urbana-Champaign ChampaignIL United States University of Washington SeattleWA United States Google Research Mountain ViewCA United States UC Berkeley BerkeleyCA United States
Recent advancements in general-purpose ai have highlighted the urgent need to align ai systems with the goals, ethical principles, and values of individuals and society. Existing alignment research has been primarily ... 详细信息
来源: 评论
ML-Assisted Monitoring and Characterization of IoT Sensor Networks
ML-Assisted Monitoring and Characterization of IoT Sensor Ne...
收藏 引用
IEEE Workshop on Evolving and Adaptive Intelligent Systems (EaiS)
作者: Karine Ip Abhijith Asok Yijia Xu Duc Le Natalie Mionis Roman Batoukov Soundararajan Srinivasan Microsoft AI Development Acceleration Program Microsoft Cambridge MA USA Azure IoT TSI RnD Microsoft Redmond WA USA
IoT (Internet of Things) is a dynamic and evolving paradigm with a huge potential for applications across a variety of domains. The number of IoT sensors and volume of telemetry data is growing exponentially, while hu...
来源: 评论
Black is to criminal as caucasian is to police: Detecting and removing multiclass bias inword embeddings
arXiv
收藏 引用
arXiv 2019年
作者: Manziniy, Thomas Limz, Yao Chong Tsvetkovz, Yulia Blackz, Alan W. Microsoft AI Development Acceleration Program Carnegie Mellon University
Online texts-across genres, registers, domains, and styles-are riddled with human stereotypes, expressed in overt or subtle ways. Word embeddings, trained on these texts, perpetuate and amplify these stereotypes, and ... 详细信息
来源: 评论
MMLSpark: Unifying machine learning ecosystems at massive scales
arXiv
收藏 引用
arXiv 2018年
作者: Hamilton, Mark Raghunathan, Sudarshan Matiach, Ilya Schonhoffer, Andrew Raman, Anand Barzilay, Eli Rajendran, Karthik Banda, Dalitso Hong, Casey Jisoo Knoertzer, Manon Brodsky, Ben Thigpen, Minsoo Mahajan, Janhavi Suresh Cochrane, Courtney Eswaran, Abhiram Green, Ari Microsoft Applied AI CambridgeMA United States Microsoft Applied AI RedmondWA United States Microsoft Azure Machine Learning CambridgeMA United States Microsoft AI Development Acceleration Program CambridgeMA United States
We introduce microsoft Machine Learning for Apache Spark (MMLSpark), an open-source library that expands the Apache Spark distributed computing library to tackle problems in deep learning, micro-service orchestration,... 详细信息
来源: 评论