咨询与建议

限定检索结果

文献类型

  • 153 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 130 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 29 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 21 篇 光学工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 87 篇 理学
    • 57 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 32 篇 管理学
    • 19 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 contrastive lear...
  • 8 篇 training
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 81 篇 miit key laborat...
  • 66 篇 college of compu...
  • 28 篇 college of compu...
  • 17 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 48 篇 chen songcan
  • 24 篇 huang sheng-jun
  • 23 篇 li piji
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 liang dong
  • 16 篇 sheng-jun huang
  • 15 篇 songcan chen
  • 12 篇 tan xiaoyang
  • 10 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 219 篇 英文
  • 11 篇 其他
  • 5 篇 中文
检索条件"机构=Miit Key Laboratory of Pattern Analysis and Machine Intelligence"
232 条 记 录,以下是171-180 订阅
排序:
Dense Face Detection via High-level Context Mining
Dense Face Detection via High-level Context Mining
收藏 引用
International Conference on Automatic Face and Gesture Recognition
作者: Qixiang Geng Dong Liang Huiyu Zhou Liyan Zhang Han Sun Ningzhong Liu MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics School of Informatics University of Leicester
The appearance degradation caused by low resolution is the core problem of small face detection. Therefore, a natural approach is to assemble information from the context. This paper focuses on how to use high-level c... 详细信息
来源: 评论
XL2Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies
arXiv
收藏 引用
arXiv 2024年
作者: Ni, Xuanfan Cai, Hengyi Wei, Xiaochi Wang, Shuaiqiang Yin, Dawei Li, Piji Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Institute of Computing Technology CAS Beijing China Baidu Inc. Beijing China
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes. Various efforts have been proposed to expand the context window to ac... 详细信息
来源: 评论
Better safe than sorry: Preventing delusive adversaries with adversarial training
arXiv
收藏 引用
arXiv 2021年
作者: Tao, Lue Feng, Lei Yi, Jinfeng Huang, Sheng-Jun Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence China College of Computer Science Chongqing University China JD AI Research China
Delusive attacks aim to substantially deteriorate the test accuracy of the learning model by slightly perturbing the features of correctly labeled training examples. By formalizing this malicious attack as finding the... 详细信息
来源: 评论
AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Feihu Wu, Xidong Hu, Zhengmian College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Miit Key Laboratory of Pattern Analysis and Machine Intelligence China Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States
In the paper, we propose a class of faster adaptive Gradient Descent Ascent (GDA) methods for solving the nonconvex-strongly-concave minimax problems by using the unified adaptive matrices, which include almost all ex... 详细信息
来源: 评论
Learning twofold heterogeneous multi-task by sharing similar convolution kernel pairs
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Quan Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics NanjingJiangsu211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics NanjingJiangsu211106 China
Heterogeneous multi-task learning (HMTL) is an important topic in multi-task learning (MTL). Most existing HMTL methods usually solve either scenario where all tasks reside in the same input (feature) space yet unnece... 详细信息
来源: 评论
Learning Multi-Tasks with Inconsistent Labels by using Auxiliary Big Task
arXiv
收藏 引用
arXiv 2022年
作者: Feng, Quan Chen, Songcan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing211106 China
Multi-task learning is to improve the performance of the model by transferring and exploiting common knowledge among tasks. Existing MTL works mainly focus on the scenario where label sets among multiple tasks (MTs) a... 详细信息
来源: 评论
Unsupervised domain adaptation with progressive adaptation of subspaces
arXiv
收藏 引用
arXiv 2020年
作者: Li, Weikai Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics Nanjing Jiangsu211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics Nanjing Jiangsu211106 China
Unsupervised Domain Adaptation (UDA) aims to classify unlabeled target domain by transferring knowledge from labeled source domain with domain shift. Most of the existing UDA methods try to mitigate the adverse impact... 详细信息
来源: 评论
Topology Reorganized Graph Contrastive Learning with Mitigating Semantic Drift
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jiaqiang Chen, Songcan College of Computer Science & Technology Nanjing University of Aeronautics & Astronautics Jiangsu Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics & Astronautics Jiangsu Nanjing211106 China
Graph contrastive learning (GCL) is an effective paradigm for node representation learning in graphs. The key components hidden behind GCL are data augmentation and positive-negative pair selection. Typical data augme... 详细信息
来源: 评论
Pathformer3D: A 3D Scanpath Transformer for 360° Images
arXiv
收藏 引用
arXiv 2024年
作者: Quan, Rong Lai, Yantao Qiu, Mengyu Liang, Dong College of Artificial Intelligence Nanjing University of Aeronautics and Astronautics The Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Shenzhen Research Institute Nanjing University of Aeronautics and Astronautics Shenzhen China
Scanpath prediction in 360° images can help realize rapid rendering and better user interaction in Virtual/Augmented Reality applications. However, existing scanpath prediction models for 360° images execute... 详细信息
来源: 评论
FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted Dual Averaging
arXiv
收藏 引用
arXiv 2023年
作者: Li, Junyi Huang, Feihu Huang, Heng Department of Electrical and Computer Engineering University of Pittsburgh Pittsburgh United States College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China
Federated learning (FL) is an emerging learning paradigm to tackle massively distributed data. In Federated Learning, a set of clients jointly perform a machine learning task under the coordination of a server. The Fe... 详细信息
来源: 评论