咨询与建议

限定检索结果

文献类型

  • 153 篇 期刊文献
  • 79 篇 会议

馆藏范围

  • 232 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 161 篇 工学
    • 130 篇 计算机科学与技术...
    • 111 篇 软件工程
    • 29 篇 控制科学与工程
    • 23 篇 信息与通信工程
    • 21 篇 光学工程
    • 21 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 机械工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 仪器科学与技术
    • 4 篇 材料科学与工程(可...
  • 87 篇 理学
    • 57 篇 数学
    • 24 篇 生物学
    • 18 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 14 篇 物理学
    • 8 篇 化学
  • 32 篇 管理学
    • 19 篇 图书情报与档案管...
    • 14 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 医学
    • 10 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 8 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 教育学
    • 4 篇 教育学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 12 篇 machine learning
  • 8 篇 contrastive lear...
  • 8 篇 training
  • 7 篇 semantics
  • 6 篇 computational li...
  • 5 篇 object detection
  • 5 篇 reinforcement le...
  • 5 篇 task analysis
  • 5 篇 neuroimaging
  • 5 篇 benchmarking
  • 5 篇 stochastic syste...
  • 4 篇 deep learning
  • 4 篇 distillation
  • 4 篇 iterative method...
  • 4 篇 learning algorit...
  • 4 篇 visualization
  • 3 篇 semantic segment...
  • 3 篇 deep neural netw...
  • 3 篇 training data
  • 3 篇 adversarial mach...

机构

  • 81 篇 miit key laborat...
  • 66 篇 college of compu...
  • 28 篇 college of compu...
  • 17 篇 miit key laborat...
  • 13 篇 miit key laborat...
  • 10 篇 collaborative in...
  • 8 篇 college of compu...
  • 6 篇 college of compu...
  • 6 篇 nanjing universi...
  • 5 篇 jd ai research
  • 5 篇 department of el...
  • 5 篇 the college of c...
  • 4 篇 chongqing jiaoto...
  • 4 篇 riken center for...
  • 4 篇 nanyang technolo...
  • 4 篇 department of ma...
  • 4 篇 college of compu...
  • 4 篇 school of comput...
  • 4 篇 school of comput...
  • 4 篇 college of compu...

作者

  • 48 篇 chen songcan
  • 24 篇 huang sheng-jun
  • 23 篇 li piji
  • 18 篇 huang feihu
  • 18 篇 zhang daoqiang
  • 17 篇 liang dong
  • 16 篇 sheng-jun huang
  • 15 篇 songcan chen
  • 12 篇 tan xiaoyang
  • 10 篇 geng chuanxing
  • 9 篇 wang xinrui
  • 9 篇 daoqiang zhang
  • 8 篇 li shao-yuan
  • 7 篇 wei mingqiang
  • 7 篇 li zhongnian
  • 7 篇 ming-kun xie
  • 6 篇 xie ming-kun
  • 6 篇 wang renzhi
  • 6 篇 li weikai
  • 6 篇 tao lue

语言

  • 219 篇 英文
  • 11 篇 其他
  • 5 篇 中文
检索条件"机构=Miit Key Laboratory of Pattern Analysis and Machine Intelligence"
232 条 记 录,以下是211-220 订阅
排序:
AADL and Modelica model combination and model conversion based on CPS  20
AADL and Modelica model combination and model conversion bas...
收藏 引用
Proceedings of the 2020 4th International Conference on Electronic Information Technology and Computer Engineering
作者: Yifeng Zhu Zining Cao Fujun Wang Weiwei Lu College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China College of Computer Science and Technology Collaborative Innovation Center of Novel Software Technology and Industrialization MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics and Science and Technology on Electro-optic Control Laboratory Luoyang China Science and Technology on Electro-optic Control Laboratory Luoyang China
Cyber-Physical System (CPS), which realizes the close integration of physical resources and information resources, is a distributed and asynchronous dynamic hybrid system running in different time and space. In this p... 详细信息
来源: 评论
Complementary Labels Learning with Augmented Classes
SSRN
收藏 引用
SSRN 2023年
作者: Li, Zhongnian Xu, Mengting Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China College of Computer Science and Technology Zhejiang University Zhejiang Hangzhou310000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning, which aims to alleviate the annotation cost compared with standard supervised ***, most... 详细信息
来源: 评论
Formal modeling and performance evaluation for hybrid systems: A probabilistic hybrid process algebra-based approach
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Fujun J. Cao, Zining Tan, Lixing Li, Zhen College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China Key Laboratory of Safety-Critical Software Nanjing University of Aeronautics and Astronautics Ministry of Industry and Information Technology Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing China Science and Technology on Electro-optic Control Laboratory Luoyang China Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing China
Probabilistic behavior is omnipresent in computer controlled systems, in particular, so-called safety-critical hybrid systems, because of various reasons, like uncertain environments, or fundamental properties of natu... 详细信息
来源: 评论
Rate-Distortion Modeling for Bit Rate Constrained Point Cloud Compression
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Pan Luo, Shengzhou Paul, Manoranjan College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing University of Aeronautics and Astronautics Nanjing211106 China School of Software South China Normal University Foshan528225 China School of Computing and Mathematics Charles Sturt University BathurstNSW2795 Australia
As being one of the main representation formats of 3D real world and well-suited for virtual reality and augmented reality applications, point clouds have gained a lot of popularity. In order to reduce the huge amount... 详细信息
来源: 评论
Complementary Labels Learning with Augmented Classes
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zhongnian Zhang, Jian Xu, Mengting Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China college of computer science and technology Zhejiang University Zhejiang Hangzhou310000 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Complementary Labels Learning (CLL) arises in many real-world tasks such as private questions classification and online learning, which aims to alleviate the annotation cost compared with standard supervised learning.... 详细信息
来源: 评论
Learning from Positive and Unlabeled Data with Augmented Classes
SSRN
收藏 引用
SSRN 2022年
作者: Li, Zhongnian Yang, Liutao Ma, Zhongchen Sun, Tongfeng Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China School of Computer Science and communications Engineering Jiangsu University Jiangsu Zhenjiang212013 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Positive Unlabeled (PU) learning aims to learn a binary classifier from only positive and unlabeled data, which is utilized in many real-world scenarios. However, existing PU learning algorithms cannot deal with the r... 详细信息
来源: 评论
Learning from Positive and Unlabeled Data with Augmented Classes
SSRN
收藏 引用
SSRN 2023年
作者: Li, Zhongnian Yang, Liutao Ma, Zhongchen Sun, Tongfeng Xu, Xinzheng Zhang, Daoqiang School of Computer Science and Technology China University of Ming and Technogy Jiangsu Xuzhou221000 China College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Jiangsu Nanjing210000 China School of Computer Science and communications Engineering Jiangsu University Jiangsu Zhenjiang212013 China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Jiangsu Nanjing210000 China
Positive Unlabeled (PU) learning aims to learn a binary classifier from only positive and unlabeled data, which is utilized in many real-world scenarios. However, existing PU learning algorithms cannot deal with the r... 详细信息
来源: 评论
Refine-Net: Normal Refinement Neural Network for Noisy Point Clouds
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Haoran Chen, Honghua Zhang, Yingkui Wei, Mingqiang Xie, Haoran Wang, Jun Lu, Tong Qin, Jing Zhang, Xiao-Ping State Key Laboratory for Novel Software Technology Nanjing University Nanjing China School of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing China MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Nanjing China Department of Computing and Decision Sciences Lingnan University Hong Kong School of Nursing The Hong Kong Polytechnic University Hong Kong Department of Electrical Computer and Biomedical Engineering Ryerson University Toronto Canada
Point normal, as an intrinsic geometric property of 3D objects, not only serves conventional geometric tasks such as surface consolidation and reconstruction, but also facilitates cutting-edge learning-based technique... 详细信息
来源: 评论
Learning Calibrated-Guidance for Object Detection in Aerial Images
arXiv
收藏 引用
arXiv 2021年
作者: Wei, Zongqi Liang, Dong Zhang, Dong Zhang, Liyan Geng, Qixiang Wei, Mingqiang Zhou, Huiyu The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics MIIT Key Laboratory of Pattern Analysis and Machine Intelligence Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing211106 China The School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China The School of Informatics University of Leicester LeicesterLE1 7RH United Kingdom
Object detection is one of the most fundamental yet challenging research topics in the domain of computer vision. Recently, the study on this topic in aerial images has made tremendous progress. However, complex backg... 详细信息
来源: 评论
A rough set approach for planner evaluation
A rough set approach for planner evaluation
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: B.K. Sy Wang Jiaxin Pattern Analysis and Machine Intelligence Group System Design Engineering Department University of Waterloo Waterloo ONT Canada Department of Computer Science CUNY Flushing NY USA The State Key Laboratory of Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing China
This paper discusses a rough set approach for evaluating solutions of scheduling problems. Algorithms for solving scheduling problems are planners and the scheduling problems are modelled as constraint satisfaction pr... 详细信息
来源: 评论