咨询与建议

限定检索结果

文献类型

  • 2,231 篇 期刊文献
  • 1,657 篇 会议
  • 1 册 图书

馆藏范围

  • 3,889 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,580 篇 工学
    • 1,379 篇 计算机科学与技术...
    • 1,106 篇 软件工程
    • 504 篇 信息与通信工程
    • 381 篇 电气工程
    • 316 篇 电子科学与技术(可...
    • 303 篇 控制科学与工程
    • 273 篇 生物工程
    • 265 篇 化学工程与技术
    • 214 篇 生物医学工程(可授...
    • 194 篇 光学工程
    • 186 篇 材料科学与工程(可...
    • 181 篇 机械工程
    • 152 篇 仪器科学与技术
    • 127 篇 动力工程及工程热...
    • 97 篇 土木工程
    • 96 篇 交通运输工程
    • 83 篇 网络空间安全
    • 82 篇 建筑学
  • 1,651 篇 理学
    • 782 篇 数学
    • 560 篇 物理学
    • 326 篇 生物学
    • 243 篇 化学
    • 224 篇 统计学(可授理学、...
    • 136 篇 系统科学
    • 83 篇 地球物理学
  • 500 篇 管理学
    • 281 篇 管理科学与工程(可...
    • 240 篇 图书情报与档案管...
    • 106 篇 工商管理
  • 164 篇 医学
    • 132 篇 临床医学
    • 112 篇 基础医学(可授医学...
  • 80 篇 农学
  • 56 篇 法学
  • 38 篇 经济学
  • 15 篇 教育学
  • 9 篇 军事学
  • 6 篇 艺术学
  • 2 篇 文学
  • 1 篇 历史学

主题

  • 100 篇 semantics
  • 80 篇 feature extracti...
  • 60 篇 training
  • 59 篇 accuracy
  • 57 篇 deep learning
  • 53 篇 computational mo...
  • 44 篇 neural networks
  • 43 篇 optimization
  • 41 篇 machine learning
  • 37 篇 federated learni...
  • 36 篇 object detection
  • 34 篇 image segmentati...
  • 34 篇 data mining
  • 31 篇 simulation
  • 31 篇 predictive model...
  • 31 篇 privacy
  • 30 篇 contrastive lear...
  • 30 篇 measurement
  • 29 篇 visualization
  • 28 篇 cosmic rays

机构

  • 196 篇 key laboratory o...
  • 157 篇 school of comput...
  • 138 篇 key laboratory o...
  • 103 篇 university of ch...
  • 102 篇 university of sc...
  • 100 篇 hebei normal uni...
  • 100 篇 state key labora...
  • 98 篇 tianfu cosmic ra...
  • 98 篇 yunnan observato...
  • 90 篇 school of physic...
  • 89 篇 key laboratory f...
  • 88 篇 center for astro...
  • 88 篇 college of physi...
  • 86 篇 department of ph...
  • 86 篇 key laboratory o...
  • 86 篇 institute of fro...
  • 86 篇 school of physic...
  • 86 篇 school of physic...
  • 84 篇 national space s...
  • 82 篇 moscow institute...

作者

  • 83 篇 axikegu
  • 78 篇 fang j.
  • 78 篇 feng c.f.
  • 77 篇 bastieri d.
  • 77 篇 jiang k.
  • 73 篇 danzengluobu
  • 72 篇 kuleshov d.
  • 72 篇 liu d.
  • 71 篇 chen m.j.
  • 71 篇 liu s.m.
  • 71 篇 huang d.h.
  • 71 篇 dai h.l.
  • 70 篇 guo y.q.
  • 69 篇 li xin
  • 69 篇 bao y.w.
  • 68 篇 li cheng
  • 68 篇 hu h.b.
  • 68 篇 liu b.
  • 65 篇 min z.
  • 64 篇 zheng wei-shi

语言

  • 3,310 篇 英文
  • 511 篇 其他
  • 81 篇 中文
检索条件"机构=Ministry of Education Key Laboratory in Scientific and Engineering Computing"
3889 条 记 录,以下是1171-1180 订阅
排序:
A Weighted Flat Lattice Transformer-based Knowledge Extraction Architecture for Chinese Named Entity Recognition
A Weighted Flat Lattice Transformer-based Knowledge Extracti...
收藏 引用
International Conference on Computer Supported Cooperative Work in Design
作者: Hengwei Zhang Yuejia Wu Jian-Tao Zhou Inner Mongolia University College of Computer Science Hohhot China Ministry of Education National & Local Joint Engineering Research Center of Intelligent Information Processing Technology for Mongolian Engineering Research Center of Ecological Big Data Hohhot China Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software Hohhot China Inner Mongolia Key Laboratory of Social Computing and Data Processing Hohhot China Inner Mongolia Key Laboratory of Discipline Inspection and Supervision Big Data Hohhot China Inner Mongolia Engineering Laboratory for Big Data Analysis Technology Hohhot China
Named Entity Recognition (NER) is one of the contents of Knowledge Extraction (KE) that transforms data into knowledge representation. However, Chinese NER faces the problem of lacking clear word boundaries that limit... 详细信息
来源: 评论
Progressive Human Motion Generation Based on Text and Few Motion Frames
arXiv
收藏 引用
arXiv 2025年
作者: Zeng, Ling-An Wu, Gaojie Wu, Ancong Hu, Jian-Fang Zheng, Wei-Shi School of Artificial Intelligence Sun Yat-sen University Guangdong Zhuhai519082 China School of Computer Science and Engineering Sun Yat-sen University Guangdong Guangzhou510275 China School of Computer Science and Engineering Sun Yat-sen University China The Guangdong Key Laboratory of Information Security Technology China The Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education China Peng Cheng Laboratory China
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insuffic... 详细信息
来源: 评论
Schrödingerization based Quantum Circuits for Maxwell’s Equation with time-dependent source terms
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Chuwen Jin, Shi Liu, Nana Wang, Kezhen Zhang, Lei School of Mathematical Sciences Shanghai Jiao Tong University Shanghai200240 China Institute of Natural Sciences Shanghai Jiao Tong University Shanghai200240 China Ministry of Education Key Laboratory in Scientific and Engineering Computing Shanghai Jiao Tong University Shanghai200240 China University of Michigan Shanghai Jiao Tong University Joint Institute Shanghai200240 China
The Schrödingerisation method combined with the autonomozation technique in [10] converts general non-autonomous linear differential equations with non-unitary dynamics into systems of autonomous Schrödinger... 详细信息
来源: 评论
Batch-in-Batch: A new adversarial training framework for initial perturbation and sample selection
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yinting Peng, Pai Cai, Bo Li, Le School of Mathematics and Statistics Key Lab NAA-MOE Central China Normal University Wuhan China School of Mathematics and Computer Science Jianghan University Wuhan China Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education School of Cyber Science and Engineering Wuhan University China
Adversarial training methods commonly generate independent initial perturbation for adversarial samples from a simple uniform distribution, and obtain the training batch for the classifier without selection. In this w... 详细信息
来源: 评论
A Hybrid Loss Network for Localization of Image Manipulation  19th
A Hybrid Loss Network for Localization of Image Manipulation
收藏 引用
19th International Workshop on Digital Forensics and Watermarking, IWDW 2020
作者: Yin, Qilin Wang, Jinwei Luo, Xiangyang Nanjing University of Information Science and Technology and Engineering Research Center of Digital Forensics Ministry of Education Nanjing210044 China State Key Laboratory of Mathematical Engineering and Advanced Computing Henan450001 China Shanxi Key Laboratory of Network and System Security Xidian University Xi’an710071 China
With the development of information security, localization of image manipulations havs become a hot topic. In this paper, a hybrid loss network is proposed for the manipulated image forensics. First, the patch predict... 详细信息
来源: 评论
FOURIER NEURAL SOLVER FOR LARGE SPARSE LINEAR ALGEBRAIC SYSTEMS
arXiv
收藏 引用
arXiv 2022年
作者: Cui, Chen Jiang, Kai Liu, Yun Shu, Shi Hunan Key Laboratory for Computation and Simulation in Science and Engineering Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
Large sparse linear algebraic systems can be found in a variety of scientific and engineering fields, and many scientists strive to solve them in an efficient and robust manner. In this paper, we propose an interpreta... 详细信息
来源: 评论
Vehicle Destination Prediction Based on Trajectory Data
Vehicle Destination Prediction Based on Trajectory Data
收藏 引用
Neural Networks, Information and Communication engineering (NNICE), International Conference on
作者: Wenming Guo Ruiqi Jia Che Zong Ruichao Li Key Laboratory of Trustworthy Distributed Computing and Service Ministry of Education School of Computer Science (National Pilot Software Engineering School) Beijing University of Posts and Telecommunications Beijing China School of Information Engineering Xinjiang Institute of Engineering Urumqi China School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China
With the increasing requirements of real-time traffic management in urban transportation, vehicle destination prediction data, as an important part of smart city brain data, is becoming more and more important in urba...
来源: 评论
Privacy-Preserving Push-Pull Method for Decentralized Optimization via State Decomposition
arXiv
收藏 引用
arXiv 2023年
作者: Cheng, Huqiang Liao, Xiaofeng Li, Huaqing Zhao, You Key Laboratory of Dependable Services Computing in Cyber Physical Society Ministry of Education College of Computer Science Chongqing University Chongqing400044 China Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing College of Electronic and Information Engineering Southwest University Chongqing400715 China
Distributed optimization is manifesting great potential in multiple fields, e.g., machine learning, control, and resource allocation. Existing decentralized optimization algorithms require sharing explicit state infor... 详细信息
来源: 评论
Multitask kernel-learning parameter prediction method for solving time-dependent linear systems
arXiv
收藏 引用
arXiv 2022年
作者: Jiang, Kai Zhang, Juan Zhou, Qi Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Hunan key Laboratory for Computation and Simulation in Science and Engineering School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
Matrix splitting iteration methods play a vital role in solving large sparse linear systems. Their performance heavily depends on the splitting parameters, however, the approach of selecting optimal splitting paramete... 详细信息
来源: 评论
A general alternating-direction implicit Newton method for solving complex continuous-time algebraic Riccati matrix equation
arXiv
收藏 引用
arXiv 2022年
作者: Li, Shifeng Jiang, Kai Zhang, Juan Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education Hunan Key Laboratory for Computation and Simulation in Science and Engineering School of Mathematics and Computational Science Xiangtan University Hunan Xiangtan411105 China
In this paper, applying the Newton method, we transform the complex continuous-time algebraic Riccati matrix equation into a Lyapunov equation. Then, we introduce an efficient general alternating-direction implicit (G... 详细信息
来源: 评论