咨询与建议

限定检索结果

文献类型

  • 908 篇 会议
  • 643 篇 期刊文献

馆藏范围

  • 1,551 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 988 篇 工学
    • 533 篇 计算机科学与技术...
    • 471 篇 软件工程
    • 300 篇 控制科学与工程
    • 163 篇 电气工程
    • 147 篇 信息与通信工程
    • 135 篇 机械工程
    • 118 篇 生物工程
    • 107 篇 生物医学工程(可授...
    • 105 篇 电子科学与技术(可...
    • 96 篇 光学工程
    • 53 篇 化学工程与技术
    • 51 篇 仪器科学与技术
    • 45 篇 交通运输工程
    • 37 篇 动力工程及工程热...
    • 30 篇 航空宇航科学与技...
    • 28 篇 力学(可授工学、理...
    • 23 篇 土木工程
  • 608 篇 理学
    • 364 篇 数学
    • 138 篇 物理学
    • 128 篇 生物学
    • 116 篇 系统科学
    • 97 篇 统计学(可授理学、...
    • 51 篇 化学
  • 225 篇 管理学
    • 166 篇 管理科学与工程(可...
    • 65 篇 图书情报与档案管...
    • 53 篇 工商管理
  • 74 篇 医学
    • 60 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 21 篇 法学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 11 篇 教育学
  • 11 篇 农学
  • 7 篇 军事学
  • 6 篇 文学
  • 1 篇 艺术学

主题

  • 48 篇 feature extracti...
  • 38 篇 training
  • 26 篇 object detection
  • 25 篇 image segmentati...
  • 25 篇 multi-agent syst...
  • 21 篇 computational mo...
  • 20 篇 simulation
  • 20 篇 accuracy
  • 20 篇 multi agent syst...
  • 19 篇 support vector m...
  • 19 篇 deep learning
  • 19 篇 stability analys...
  • 19 篇 optimization
  • 19 篇 machine learning
  • 18 篇 electroencephalo...
  • 17 篇 neural networks
  • 17 篇 semantics
  • 16 篇 target tracking
  • 16 篇 real-time system...
  • 16 篇 robustness

机构

  • 115 篇 shanghai enginee...
  • 112 篇 department of au...
  • 112 篇 key laboratory o...
  • 78 篇 school of artifi...
  • 57 篇 school of automa...
  • 48 篇 key laboratory o...
  • 40 篇 key laboratory o...
  • 38 篇 key laboratory o...
  • 36 篇 key laboratory o...
  • 33 篇 shenzhen huazhon...
  • 31 篇 key laboratory o...
  • 27 篇 key laboratory o...
  • 23 篇 key laboratory o...
  • 21 篇 department of au...
  • 20 篇 institute of ima...
  • 20 篇 department of co...
  • 20 篇 ministry of educ...
  • 19 篇 key laboratory o...
  • 17 篇 ministry of educ...
  • 16 篇 shanghai jiao to...

作者

  • 61 篇 wu dongrui
  • 50 篇 zeng zhigang
  • 43 篇 zhigang zeng
  • 36 篇 ding mingyue
  • 33 篇 jiao licheng
  • 32 篇 cao zhiguo
  • 32 篇 mingyue ding
  • 31 篇 licheng jiao
  • 30 篇 chen cailian
  • 30 篇 wang hesheng
  • 29 篇 guan xinping
  • 26 篇 xi li
  • 25 篇 housheng su
  • 25 篇 su housheng
  • 23 篇 sang nong
  • 22 篇 jian huang
  • 21 篇 wang guangming
  • 21 篇 yongji wang
  • 19 篇 li xi
  • 19 篇 jie yang

语言

  • 1,474 篇 英文
  • 40 篇 其他
  • 38 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 日文
检索条件"机构=Ministry of Education Key Laboratory of Image Processing and Intelligent Control"
1551 条 记 录,以下是1451-1460 订阅
排序:
Recurrent Attentional Reinforcement Learning for Machinery Fault Diagnosis
SSRN
收藏 引用
SSRN 2024年
作者: Tang, Zhenhui Wang, Jingcheng Wu, Shunyu The Department of Automation The Key Laboratory of System Control and Information Processing Ministry of Education of China The Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University No.800 Dongchuan Road Shanghai200240 China The SJTU Sanya Yazhou Bay Institute of Deepsea Science and Technology Sanya572024 China The Autonomous Systems and Intelligent Control International Joint Research Center Xi’an Technological University Xi’an710021 China
Recognizing fault types of machinery system is a fundamental but challenging task in industrial application. Although remarkable progress has been attained by learning fault features and predicting the corresponded fa... 详细信息
来源: 评论
Channel Reflection: Knowledge-Driven Data Augmentation for Eeg-Based Bcis
SSRN
收藏 引用
SSRN 2024年
作者: Wang, Ziwei Li, Siyang Luo, Jingwei Liu, Jiajing Wu, Dongrui Key Laboratory of the Ministry of Education for Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen518063 China China Electronic System Technology Co. Ltd. Beijing100089 China School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan430074 China
A brain-computer interface (BCI) enables direct communication between the human brain and external devices. Electroencephalography (EEG) based BCIs are currently the most popular for able-bodied users. To increase use... 详细信息
来源: 评论
Incremental Online Learning of Randomized Neural Network with Forward Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Junda Hu, Minghui Li, Ning Al-Ali, Abdulaziz Suganthan, Ponnuthurai Nagaratnam The Key Laboratory of System Control and Information Processing Ministry of Education of China China The Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Shanghai Engineering Research Center of Intelligent Control and Management Shanghai200240 China The School of Electrical and Electronic Nanyang Technological University Singapore The KINDI Computing Research Center College of Engineering Qatar University Qatar
Online learning of deep neural networks suffers from challenges such as hysteretic non-incremental updating, increasing memory usage, past retrospective retraining, and catastrophic forgetting. To alleviate these draw...
来源: 评论
AoI-Reliability Analysis with Block Length over Erasure Channels Using Rateless Codes
AoI-Reliability Analysis with Block Length over Erasure Chan...
收藏 引用
International Conference on Communication Technology (ICCT)
作者: Haobo Huang Yusun Fu Yue Qiao Junpeng Yin Weiwu Yan Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University Ningbo China School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai China
As a metric to measure the information freshness, Age of Information (AoI) is widely used to evaluate low-latency high-reliability communication. Since the communication in Industrial Internet of Things (IIoT) often h... 详细信息
来源: 评论
Named Entity Recognition Based on Anchor Span for Manufacturing Text Knowledge Extraction
SSRN
收藏 引用
SSRN 2024年
作者: Li, Yahui Sun, Qi Zhou, Chunjie Liu, Lu Tian, Yu-Chu School of Artificial Intelligence and Automation Huazhong University of Science and Technology Hubei Wuhan430074 China Key Laboratory of Image Processing and Intelligent Control Ministry of Education Huazhong University of Science and Technology Hubei Wuhan430074 China School of Cyber Science and Engineering Huazhong University of Science and Technology Hubei Wuhan430074 China School of Computer Science Queensland University of Technology BrisbaneQLD4001 Australia
intelligent industrial manufacturing heavily relies on structured knowledge. Named Entity Recognition (NER), an essential technique for extracting structured knowledge from text, has garnered significant research inte... 详细信息
来源: 评论
Enhancing the McEliece Scheme Based on Concatenation of Polar Codes and Blocked QC-LDPC Codes
Enhancing the McEliece Scheme Based on Concatenation of Pola...
收藏 引用
IEEE Conference on Communications and Network Security (CNS)
作者: Xin Lin Yusun Fu Zihao Wang Junpeng Yin Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University Ningbo China School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai China
This paper proposes an enhanced McEliece cryptosystem, leveraging a concatenation scheme of Polar codes and blocked QC-LDPC codes. During the key generation phase, the generator matrices for both Polar and blocked QC-... 详细信息
来源: 评论
Understanding the Robustness of 3D Object Detection with Bird’s-Eye-View Representations in Autonomous Driving
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Zijian Zhang, Yichi Chen, Hai Dong, Yinpeng Zhao, Shu Ding, Wenbo Zhong, Jiachen Zheng, Shibao Institute of Image Communication and Network Engineering Shanghai Jiao Tong University China Dept. of Comp. Sci. and Tech. Institute for AI THBI Lab BNRist Center Tsinghua University China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education School of Computer Science and Technology Anhui University Information Materials and Intelligent Sensing Laboratory of Anhui Province China SAIC Motor AI Lab China Zhongguancun Laboratory China
3D object detection is an essential perception task in autonomous driving to understand the environments. The Bird’s-Eye-View (BEV) representations have significantly improved the performance of 3D detectors with cam... 详细信息
来源: 评论
Boltzmann Robust Soliton Distribution for Rateless Codes
Boltzmann Robust Soliton Distribution for Rateless Codes
收藏 引用
International Conference on Communication Technology (ICCT)
作者: Jinhui Tang Yusun Fu Yue Qiao Junpeng Yin Haobo Huang School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University Ningbo China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Shanghai Engineering Research Center of Intelligent Control and Management Shanghai Jiao Tong University Shanghai China
The decoding success rate may be worse when classical degree distributions are used in short-packet transmission of rateless codes, especially in industrial communication scenarios. A novel Boltzmann degree distributi... 详细信息
来源: 评论
Multi-level Coordinated Energy Management for Energy Hub in Hybrid Markets with Distributionally Robust Scheduling
arXiv
收藏 引用
arXiv 2022年
作者: Cao, Jiaxin Yang, Bo Zhu, Shanying Chung, Chi Yung Guan, Xinping Department of Automation Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of System Control and Information Processing Ministry of Education China Shanghai Engineering Research Center of Industrial Intelligent Control and Management Shanghai200240 China Department of Electrical and Computer Engineering University of Saskatchewan SaskatoonSKS7N 5A9 Canada
Maintaining energy balance and economical operation is significant for multi-energy systems such as the energy hub (EH). However, it is usually challenged by the frequently changing and unpredictable uncertain paramet... 详细信息
来源: 评论
Self-Organized Criticality in C. Elegans Neural Network
Self-Organized Criticality in C. Elegans Neural Network
收藏 引用
Chinese control Conference (CCC)
作者: Xiao Gu Jian Liu Ye Yuan Peng Zhao Kuankuan Xin Tao Fang Department of Automation Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education Shanghai China Shanghai Engineering Research Centre of Intelligent Control and Management Shanghai China Institute of Machine Intelligence University of Shanghai for Science and Technology Shanghai China Queensland Brain Institute The University of Queensland Brisbane QLD Australia
The self-organized criticality is a fundamental property for organisms to perform normal functional activities. Extensive large-scale biological neural network researches have found the existence of self-organized cri...
来源: 评论