咨询与建议

限定检索结果

文献类型

  • 1,333 篇 期刊文献
  • 286 篇 会议
  • 1 册 图书

馆藏范围

  • 1,620 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,191 篇 理学
    • 615 篇 数学
    • 600 篇 物理学
    • 144 篇 统计学(可授理学、...
    • 107 篇 系统科学
    • 98 篇 化学
    • 60 篇 生物学
    • 13 篇 天文学
  • 896 篇 工学
    • 325 篇 计算机科学与技术...
    • 246 篇 软件工程
    • 156 篇 核科学与技术
    • 113 篇 力学(可授工学、理...
    • 110 篇 控制科学与工程
    • 109 篇 信息与通信工程
    • 90 篇 化学工程与技术
    • 82 篇 电子科学与技术(可...
    • 74 篇 电气工程
    • 62 篇 材料科学与工程(可...
    • 62 篇 动力工程及工程热...
    • 48 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 39 篇 机械工程
    • 34 篇 光学工程
    • 21 篇 仪器科学与技术
  • 102 篇 管理学
    • 63 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 41 篇 医学
    • 30 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 19 篇 药学(可授医学、理...
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 9 篇 法学
  • 9 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 128 篇 hadron colliders
  • 43 篇 higgs bosons
  • 38 篇 w & z bosons
  • 30 篇 hadron-hadron sc...
  • 30 篇 relativistic hea...
  • 19 篇 navier stokes eq...
  • 19 篇 lattice-boltzman...
  • 19 篇 cms
  • 18 篇 supersymmetric m...
  • 18 篇 hypothetical par...
  • 18 篇 top quark
  • 18 篇 quark & gluon je...
  • 17 篇 machine learning
  • 17 篇 extensions of hi...
  • 15 篇 optimization
  • 14 篇 bottom quark
  • 14 篇 convergence
  • 14 篇 particle product...
  • 14 篇 stochastic syste...
  • 14 篇 training

机构

  • 270 篇 irfu cea univers...
  • 205 篇 infn sezione di ...
  • 198 篇 yerevan physics ...
  • 172 篇 centro brasileir...
  • 171 篇 indian institute...
  • 170 篇 academy of scien...
  • 169 篇 university of sp...
  • 164 篇 faculty of scien...
  • 164 篇 department for p...
  • 164 篇 west university ...
  • 164 篇 kirchhoff-instit...
  • 162 篇 department of mo...
  • 162 篇 infn e laborator...
  • 162 篇 infn sezione di ...
  • 161 篇 department of ph...
  • 159 篇 charles universi...
  • 157 篇 department physi...
  • 156 篇 department of ph...
  • 152 篇 department of ph...
  • 152 篇 deutsches elektr...

作者

  • 193 篇 m. lu
  • 114 篇 c. alexa
  • 114 篇 g. bella
  • 114 篇 d. calvet
  • 114 篇 c. amelung
  • 112 篇 j. m. izen
  • 112 篇 j. strandberg
  • 112 篇 f. pastore
  • 111 篇 b. konya
  • 111 篇 n. orlando
  • 108 篇 y. tayalati
  • 105 篇 t. pham
  • 104 篇 g. spigo
  • 102 篇 s. barsov
  • 102 篇 v. chiarella
  • 99 篇 f. siegert
  • 97 篇 a. dimitrievska
  • 97 篇 f. deliot
  • 95 篇 r. ströhmer
  • 94 篇 t. r. van daalen

语言

  • 1,520 篇 英文
  • 70 篇 其他
  • 28 篇 中文
检索条件"机构=MoE Key Laboratory in Scientific and Engineering Computing"
1620 条 记 录,以下是1351-1360 订阅
排序:
A trust region method based on a new affine scaling technique for simple bounded optimization
A trust region method based on a new affine scaling techniqu...
收藏 引用
作者: Wang, Xiao Yuan, Ya-Xiang State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Chinese Academy of Sciences PO Box 2719 Beijing 100190 China
In this paper, we propose a new trust region affine scaling method for nonlinear programming with simple bounds. Our new method is an interior-point trust region method with a new scaling technique. The scaling matrix... 详细信息
来源: 评论
Nonequilibrium hypersonic flows simulations with asymptotic-preserving Monte Carlo methods
Nonequilibrium hypersonic flows simulations with asymptotic-...
收藏 引用
29th International Symposium on Rarefied Gas Dynamics(第29届国际稀薄气体动力学会议)
作者: Wei Ren Hong Liu Shi Jin J C Wu Center for Aerodynamics School of Aeronautics and AstronauticsShanghai Jiao Tong University200240 ShanghaiChina Department of MathematicsInstitute of Natural Sciences and MOE Key Lab in Scientific and Engineering ComputingShanghai Jiao Tong University200240 ShanghaiChina Department of Mathematics University of WisconsinUSA
In the rarefied gas dynamics, the DSMC method is one of the most popular numerical tools. It performs satisfactorily in simulating hypersonic flows surrounding re-entry vehicles and micro-/nano- flows. However, the co... 详细信息
来源: 评论
Advances in biomolecular surface meshing and its applications to mathematical modeling
收藏 引用
Chinese Science Bulletin 2013年 第16期58卷 1843-1849页
作者: CHEN MinXin LU BenZhuo Center for System Biology Department of Mathematics Soochow University State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics Academy of Mathematics and Systems Science National Center for Mathematics and Interdisciplinary Sciences Chinese Academy of Sciences
In the field of molecular modeling and simulation, molecular surface meshes are necessary for many problems, such as molecular structure visualization and analysis, docking problem and implicit solvent modeling and si... 详细信息
来源: 评论
EPAS: Efficient privacy-preserving authentication scheme for VANETs-based emergency communication
Journal of Software
收藏 引用
Journal of Software 2013年 第8期8卷 1914-1922页
作者: Jia, Xuedan Yuan, Xiaopeng Meng, Lixia Wang, Liangmin School of Computer Science and Telecommunication Engineering Jiangsu University Zhenjiang China School of Electronic Engineering and Optoelectronic Techniques NUST Nanjing China Key Laboratory of Intelligent Computing and Signal Processing MOE Anhui University Hefei China
Vehicular Ad Hoc Networks (VANETs) can provide participants with security services and entertainment information during the driving. To guarantee correct and smooth operations of VANETs, it is necessary to achieve eff... 详细信息
来源: 评论
Motion deblurring using super-sparsity
Motion deblurring using super-sparsity
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Zhao, Jingxiong Zhao, Haohua Zhang, Keting Zhang, Liqing MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University China
Motion blur is caused by the camera shake during the exposure in which the blur kernel describes the trace of shaking. Based on this generating process of the kernel , we observed that the distribution of the kernel o... 详细信息
来源: 评论
Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV
arXiv
收藏 引用
arXiv 2017年
作者: Sirunyan, A.M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Erö, J. Escalante Del Valle, A. Frühwirth, R. Jeitler, M. Krammer, N. Lechner, L. Liko, D. Madlener, T. Mikulec, I. Pitters, F.M. Rad, N. Schieck, J. Schöfbeck, R. Spanring, M. Templ, S. Waltenberger, W. Wulz, C.-E. Zarucki, M. Chekhovsky, V. Litomin, A. Makarenko, V. Suarez Gonzalez, J. Darwish, M.R. de Wolf, E.A. Di Croce, D. Janssen, X. Kello, T. Lelek, A. Pieters, M. Rejeb Sfar, H. van Haevermaet, H. van Mechelen, P. van Putte, S. van Remortel, N. Blekman, F. Bols, E.S. Chhibra, S.S. D’Hondt, J. de Clercq, J. Lontkovskyi, D. Lowette, S. Marchesini, I. Moortgat, S. Morton, A. Python, Q. Tavernier, S. van Doninck, W. van Mulders, P. Beghin, D. Bilin, B. Clerbaux, B. de Lentdecker, G. Dorney, B. Favart, L. Grebenyuk, A. Kalsi, A.K. Makarenko, I. Moureaux, L. Pétré, L. Popov, A. Postiau, N. Starling, E. Thomas, L. Vander Velde, C. Vanlaer, P. Vannerom, D. Wezenbeek, L. Cornelis, T. Dobur, D. Gruchala, M. Khvastunov, I. Niedziela, M. Roskas, C. Skovpen, K. Tytgat, M. Verbeke, W. Vermassen, B. Vit, M. Bruno, G. Bury, F. Caputo, C. David, P. Delaere, C. Delcourt, M. Donertas, I.S. Giammanco, A. Lemaitre, V. Mondal, K. Prisciandaro, J. Taliercio, A. Teklishyn, M. Vischia, P. Wertz, S. Wuyckens, S. Alves, G.A. Hensel, C. Moraes, A. Aldá Júnior, W.L. Belchior Batista Das Chagas, E. Brandao Malbouisson, H. Carvalho, W. Chinellato, J. Coelho, E. da Costa, E.M. da Silveira, G.G. de Jesus Damiao, D. Fonseca De Souza, S. Martins, J. Matos Figueiredo, D. Medina Jaime, M. Mora Herrera, C. Mundim, L. Nogima, H. Rebello Teles, P. Sanchez Rosas, L.J. Santoro, A. Silva Do Amaral, S.M. Sznajder, A. Thiel, M. Torres Da Silva De Araujo, F. Vilela Pereira, A. Bernardes, C.A. Calligaris, L. Fernandez Perez Tomei, T.R. Gregores, E.M. Lemos, D.S. Mercadante, P.G. Novaes, S.F. Padula, Sandra S. Aleksandrov, A. Antchev, G. Atanasov, I. Hadjiiska, R. Iaydjiev, P. Misheva, M. Rodozov, M. Shopova, M. Sultanov, G. Bonchev, M. Dimitrov, A. Ivanov, T. Litov, L. Pavlov, B. Yerevan Physics Institute Yerevan Armenia Institut für Hochenergiephysik Wien Austria Institute for Nuclear Problems Minsk Belarus Universiteit Antwerpen Antwerpen Belgium Vrije Universiteit Brussel Brussel Belgium L'Université libre de Bruxelles Bruxelles Belgium Ghent University Ghent Belgium Université Catholique de Louvain Louvain-la-Neuve Belgium Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil Universidade Estadual Paulista São Paulo Brazil Universidade Federal do ABC São Paulo Brazil Institute for Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences Sofia Bulgaria University of Sofia Sofia Bulgaria Beihang University Beijing China Department of Physics Tsinghua University Beijing China Institute of High Energy Physics Beijing China State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China Sun Yat-Sen University Guangzhou China Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application MOE Fudan University Shanghai China Zhejiang University Hangzhou China Universidad de Los Andes Bogota Colombia Universidad de Antioquia Medellin Colombia University of Split Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture Split Croatia University of Split Faculty of Science Split Croatia Institute Rudjer Boskovic Zagreb Croatia University of Cyprus Nicosia Cyprus Charles University Prague Czech Republic Escuela Politecnica Nacional Quito Ecuador Universidad San Francisco de Quito Quito Ecuador Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt Center for High Energy Physics CHEP-FU Fayoum University El-Fayoum Egypt National Institute of Chemical Physics and Biophysics Tallinn Estonia Department of Physics University of Helsinki Helsinki Finland Helsinki Institute of Physics Helsinki Finland
The nuclear modification factors of J/ψ and ψ(2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV. The analysis is based on PbPb and pp data samples collected b... 详细信息
来源: 评论
A frequency boosting method for motor imagery EEG classification in BCI-FES rehabilitation training system
A frequency boosting method for motor imagery EEG classifica...
收藏 引用
10th International Symposium on Neural Networks, ISNN 2013
作者: Liang, Jianyi Zhang, Hao Liu, Ye Wang, Hang Li, Junhua Zhang, Liqing MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
Common Spatial Pattern (CSP) and Support Vector Machine (SVM) are usually adopted for feature extraction and classification of two-class motor imagery. However, in a motor imagery based BCI-FES rehabilitation system, ... 详细信息
来源: 评论
Causal neurofeedback based BCI-FES rehabilitation for post-stroke patients
Causal neurofeedback based BCI-FES rehabilitation for post-s...
收藏 引用
20th International Conference on Neural Information Processing, ICONIP 2013
作者: Wang, Hang Liu, Ye Zhang, Hao Li, Junhua Zhang, Liqing MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
BCI-FES therapy has been proved to be an effective way to help post-stroke patients restore motor function of paralyzed limbs. In the existing BCI-FES system, patients can only asynchronously receive feedback in the f... 详细信息
来源: 评论
Optimal calculation of tensor learning approaches
Optimal calculation of tensor learning approaches
收藏 引用
10th International Symposium on Neural Networks, ISNN 2013
作者: Huang, Kai Zhang, Liqing MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
Most algorithms have been extended to the tensor space to create algorithm versions with direct tensor inputs. However, very unfortunately basically all objective functions of algorithms in the tensor space are non-co... 详细信息
来源: 评论
UMPCA based feature extraction for ECG
UMPCA based feature extraction for ECG
收藏 引用
10th International Symposium on Neural Networks, ISNN 2013
作者: Li, Dong Huang, Kai Zhang, Hanlin Zhang, Liqing MOE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China
In this paper, we propose an algorithm for 12-leads ECG signals feature extraction by Uncorrelated Multilinear Principal Component Analysis(UMPCA). However, traditional algorithms usually base on 2-leads ECG signals a... 详细信息
来源: 评论