咨询与建议

限定检索结果

文献类型

  • 1,336 篇 期刊文献
  • 286 篇 会议
  • 1 册 图书

馆藏范围

  • 1,623 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,190 篇 理学
    • 634 篇 数学
    • 599 篇 物理学
    • 161 篇 统计学(可授理学、...
    • 107 篇 系统科学
    • 96 篇 化学
    • 60 篇 生物学
    • 12 篇 天文学
  • 936 篇 工学
    • 322 篇 计算机科学与技术...
    • 245 篇 软件工程
    • 179 篇 核科学与技术
    • 115 篇 力学(可授工学、理...
    • 109 篇 控制科学与工程
    • 105 篇 信息与通信工程
    • 90 篇 化学工程与技术
    • 85 篇 电子科学与技术(可...
    • 82 篇 材料科学与工程(可...
    • 76 篇 电气工程
    • 61 篇 动力工程及工程热...
    • 48 篇 生物工程
    • 46 篇 生物医学工程(可授...
    • 38 篇 机械工程
    • 32 篇 光学工程
    • 22 篇 仪器科学与技术
  • 100 篇 管理学
    • 61 篇 管理科学与工程(可...
    • 41 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 42 篇 医学
    • 29 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 13 篇 经济学
    • 13 篇 应用经济学
  • 9 篇 法学
  • 9 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 128 篇 hadron colliders
  • 43 篇 higgs bosons
  • 38 篇 w & z bosons
  • 30 篇 hadron-hadron sc...
  • 30 篇 relativistic hea...
  • 19 篇 navier stokes eq...
  • 19 篇 lattice-boltzman...
  • 18 篇 supersymmetric m...
  • 18 篇 hypothetical par...
  • 18 篇 top quark
  • 18 篇 cms
  • 18 篇 quark & gluon je...
  • 17 篇 machine learning
  • 17 篇 extensions of hi...
  • 15 篇 optimization
  • 14 篇 bottom quark
  • 14 篇 convergence
  • 14 篇 particle product...
  • 14 篇 stochastic syste...
  • 14 篇 training

机构

  • 274 篇 irfu cea univers...
  • 205 篇 infn sezione di ...
  • 200 篇 yerevan physics ...
  • 173 篇 centro brasileir...
  • 172 篇 indian institute...
  • 171 篇 academy of scien...
  • 170 篇 university of sp...
  • 167 篇 faculty of scien...
  • 167 篇 department for p...
  • 167 篇 west university ...
  • 166 篇 kirchhoff-instit...
  • 165 篇 department of mo...
  • 165 篇 infn e laborator...
  • 164 篇 department of ph...
  • 163 篇 infn sezione di ...
  • 158 篇 department physi...
  • 158 篇 charles universi...
  • 155 篇 department of ph...
  • 153 篇 department of ph...
  • 153 篇 deutsches elektr...

作者

  • 194 篇 m. lu
  • 115 篇 c. alexa
  • 115 篇 g. bella
  • 115 篇 d. calvet
  • 115 篇 c. amelung
  • 113 篇 j. strandberg
  • 113 篇 f. pastore
  • 112 篇 j. m. izen
  • 112 篇 b. konya
  • 111 篇 n. orlando
  • 109 篇 y. tayalati
  • 106 篇 t. pham
  • 104 篇 g. spigo
  • 103 篇 s. barsov
  • 103 篇 v. chiarella
  • 100 篇 f. siegert
  • 98 篇 a. dimitrievska
  • 98 篇 f. deliot
  • 96 篇 r. ströhmer
  • 95 篇 t. r. van daalen

语言

  • 1,433 篇 英文
  • 159 篇 其他
  • 29 篇 中文
检索条件"机构=MoE Key Laboratory in Scientific and Engineering Computing"
1623 条 记 录,以下是521-530 订阅
排序:
Rectangular multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: General equilibrium and some important issues
arXiv
收藏 引用
arXiv 2022年
作者: Chai, Zhenhua Yuan, Xiaolei Shi, Baochang Institute of Interdisciplinary Research for Mathematics and Applied Science School of Mathematics and Statistics Huazhong University of Science and Technology Wuhan430074 China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan430074 China College of Mathematics and Information Science Hebei University Baoding071002 China
In this paper, we develop a general rectangular multiple-relaxation-time lattice Boltzmann (RMRT-LB) method for the Navier-Stokes equations (NSEs) and nonlinear convection-diffusion equation (NCDE) by extending our re... 详细信息
来源: 评论
Lattice QCD determination of unpolarized TMDPDFs of the nucleon  10
Lattice QCD determination of unpolarized TMDPDFs of the nucl...
收藏 引用
10th International Conference on Quarks and Nuclear Physics, QNP 2024
作者: Zhang, Qi-An He, Jin-Chen Chu, Min-Huan Hua, Jun Ji, Xiangdong Schäfer, Andreas Su, Yushan Wang, Wei Yang, Yi-Bo Zhang, Jian-Hui School of Physics Beihang University Beijing102206 China Yang Yuanqing Scientific Computering Center Tsung-Dao Lee Institute Shanghai Jiao Tong University Shanghai200240 China School of Physics and Astronomy Shanghai Jiao Tong University Shanghai200240 China Department of Physics University of Maryland College ParkMD20742 United States Guangdong Provincial Key Laboratory of Nuclear Science Institute of Quantum Matter South China Normal University Guangzhou510006 China Guangdong-Hong Kong Joint Laboratory of Quantum Matter Southern Nuclear Science Computing Center South China Normal University Guangzhou510006 China Institut für Theoretische Physik Universität Regensburg RegensburgD-93040 Germany Institute of Modern Physics Chinese Academy of Sciences Guangdong Province Huizhou516000 China CAS Key Laboratory of Theoretical Physics Institute of Theoretical Physics Chinese Academy of Sciences Beijing100190 China School of Fundamental Physics and Mathematical Sciences Hangzhou Institute for Advanced Study UCAS Hangzhou310024 China International Centre for Theoretical Physics Asia-Pacific Beijing China School of Physical Sciences University of Chinese Academy of Sciences Beijing100049 China School of Science and Engineering The Chinese University of HongKong Shenzhen518172 China Center of Advanced Quantum Studies Department of Physics Beijing Normal University Beijing100875 China
We present a first calculation of the unpolarized nucleon’s isovector transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice QCD, which are essential to predict observables of multi-scale,... 详细信息
来源: 评论
Solving Optimization Problems over the Stiefel Manifold by Smooth Exact Penalty Function
arXiv
收藏 引用
arXiv 2021年
作者: Xiao, Nachuan Liu, Xin The Institute of Operations Research and Analytics National University of Singapore Singapore State Key Laboratory of Scientific and Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences University of Chinese Academy of Sciences China
In this paper, we present a novel penalty model called ExPen for optimization over the Stiefel manifold. Different from existing penalty functions for orthogonality constraints, ExPen adopts a smooth penalty function ... 详细信息
来源: 评论
Cell-Free Massive MIMO-OFDM for High-Speed Train Communications
arXiv
收藏 引用
arXiv 2022年
作者: Zheng, Jiakang Zhang, Jiayi Björnson, Emil Li, Zhetao Ai, Bo The School of Electronic and Information Engineering Beijing Jiaotong University Beijing100044 China The Department of Computer Science KTH Royal Institute of Technology Kista Sweden The Hunan International Scientific and Technological Cooperation Base of Intelligent Network Key Laboratory of Intelligent Computing & Information Processing Ministry of Education Xiangtan University Hunan411105 China The State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing100044 China
Cell-free (CF) massive multiple-input multiple-output (MIMO) systems show great potentials in low-mobility scenarios, due to cell boundary disappearance and strong macro diversity. However, the great Doppler frequency... 详细信息
来源: 评论
A Stochastic Galerkin Lattice Boltzmann Method for Incompressible Fluid Flows with Uncertainties
SSRN
收藏 引用
SSRN 2024年
作者: Zhong, Mingliang Xiao, Tianbai Krause, Mathias J. Frank, Martin Simonis, Stephan Scientific Computing Center Karlsruhe Institute of Technology Eggenstein-Leopoldshafen76344 Germany State Key Laboratory of High Temperature Gas Dynamics Centre for Interdisciplinary Research in Fluids Institute of Mechanics Chinese Academy of Sciences Beijing100190 China School of Engineering Science University of Chinese Academy of Sciences Beijing100049 China Institute for Applied and Numerical Mathematics Karlsruhe Institute of Technology Karlsruhe76131 Germany Institute of Mechanical Process Engineering and Mechanics Karlsruhe Institute of Technology Karlsruhe76131 Germany Lattice Boltzmann Research Group Karlsruhe Institute of Technology Karlsruhe76131 Germany
Efficient modeling and simulation of uncertainties in computational fluid dynamics (CFD) remains a crucial challenge. In this paper, we present the first stochastic Galerkin (SG) lattice Boltzmann method (LBM) built u... 详细信息
来源: 评论
Study on attrition of spherical-shaped Mo/HZSM-5 catalyst for methane dehydro-aromatization in a gas–solid fluidized bed
收藏 引用
Chinese Journal of Chemical engineering 2021年 第10期34卷 172-183页
作者: Xinzhuang Zhang Yunda Han Dapeng Li Zhanguo Zhang Xiaoxun Ma School of Chemical Engineering Northwest UniversityXi’an 710069China Research Institute of Shaanxi Yanchang Petroleum(Group)Co. Ltd.Xi’an 710065China Chemical Engineering Research Center of the Ministry of Education(MOE)for Advanced Use Technology of Shanbei Energy Xi’an 710069China Shaanxi Research Center of Engineering Technology for Clean Coal Conversion Xi’an 710069China Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi Xi’an 710069China International Scientific and Technological Cooperation Base of the Ministry of Science and Technology(MOST)for Clean Utilization of Hydrocarbon Resources Xi’an 710069China Hydrocarbon High-efficiency Utilization Technology Research Center of Shaanxi Yanchang Petroleum(Group)Co. Ltd.Xi’an 710065China Key Laboratory on Resources Chemicals and Materials Shenyang University of Chemical TechnologyShenyang 110142China Longdong University Qingyang 745000China
As a potential methane efficient conversion process,non-oxidative aromatization of methane in fluidized bed requires a catalyst with good attrition resistance,especially in the states of high temperature,longtime rapi... 详细信息
来源: 评论
DENSITY CONVERGENCE OF A FULLY DISCRETE FINITE DIFFERENCE METHOD FOR STOCHASTIC CAHN-HILLIARD EQUATION
arXiv
收藏 引用
arXiv 2022年
作者: Hong, Jialin Jin, Diancong Sheng, Derui LSEC ICMSEC Academy of Mathematics and Systems Science Chinese Academy of Sciences School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China School of Mathematics and Statistics Huazhong University of Science and Technology Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan430074 China
This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn-Hilliard equation driven by multiplicative space-time whit... 详细信息
来源: 评论
Convergence analysis of a finite difference method for stochastic Cahn-Hilliard equation
arXiv
收藏 引用
arXiv 2022年
作者: Hong, Jialin Jin, Diancong Sheng, Derui LSEC ICMSEC Academy of Mathematics and Systems Science Chinese Academy of Sciences School of Mathematical Sciences University of Chinese Academy of Sciences Beijing100049 China School of Mathematics and Statistics Huazhong University of Science and Technology Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan430074 China
This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn–Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of th... 详细信息
来源: 评论
A GENERAL CLASS OF ONE-STEP APPROXIMATION FOR INDEX-1 STOCHASTIC DELAY-DIFFERENTIAL-ALGEBRAIC *EQUATIONS
收藏 引用
Journal of Computational Mathematics 2019年 第2期37卷 151-169页
作者: Tingting Qin Chengjian Zhang School of Mathematics and Statistics Huazhong University of Science and Technology. Wuhan 430074 China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan 430074 China
This paper develops a class of general one-step discretization methods for solving the index-1 stochastic delay differential-algebraic equations. The existence and uniqueness theorem of strong solutions of index-1 equ... 详细信息
来源: 评论
Xdn: towards efficient inference of residual neural networks on cambricon chips  2nd
Xdn: towards efficient inference of residual neural networks...
收藏 引用
2nd International Symposium on Benchmarking, Measuring, and Optimization, Bench 2019
作者: Li, Guangli Wang, Xueying Ma, Xiu Liu, Lei Feng, Xiaobing State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China College of Computer Science and Technology Jilin University Changchun China MOE Key Laboratory of Symbolic Computation and Knowledge Engineering Jilin University Changchun China
In this paper, we present XDN, an optimization and inference engine for accelerating residual neural networks on Cambricon chips. We leverage a channel pruning method to compress the weights of ResNet-50. By exploring... 详细信息
来源: 评论