咨询与建议

限定检索结果

文献类型

  • 1,346 篇 期刊文献
  • 286 篇 会议
  • 1 册 图书

馆藏范围

  • 1,633 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,200 篇 理学
    • 618 篇 数学
    • 606 篇 物理学
    • 143 篇 统计学(可授理学、...
    • 107 篇 系统科学
    • 96 篇 化学
    • 61 篇 生物学
  • 897 篇 工学
    • 323 篇 计算机科学与技术...
    • 245 篇 软件工程
    • 155 篇 核科学与技术
    • 118 篇 力学(可授工学、理...
    • 110 篇 控制科学与工程
    • 106 篇 信息与通信工程
    • 90 篇 化学工程与技术
    • 82 篇 电子科学与技术(可...
    • 73 篇 电气工程
    • 62 篇 动力工程及工程热...
    • 61 篇 材料科学与工程(可...
    • 48 篇 生物工程
    • 47 篇 生物医学工程(可授...
    • 38 篇 机械工程
    • 34 篇 光学工程
    • 22 篇 仪器科学与技术
    • 13 篇 土木工程
  • 101 篇 管理学
    • 61 篇 管理科学与工程(可...
    • 42 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 42 篇 医学
    • 29 篇 临床医学
    • 27 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
  • 14 篇 经济学
    • 14 篇 应用经济学
  • 9 篇 法学
  • 9 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 128 篇 hadron colliders
  • 43 篇 higgs bosons
  • 38 篇 w & z bosons
  • 30 篇 hadron-hadron sc...
  • 30 篇 relativistic hea...
  • 20 篇 navier stokes eq...
  • 19 篇 lattice-boltzman...
  • 19 篇 cms
  • 18 篇 supersymmetric m...
  • 18 篇 hypothetical par...
  • 18 篇 top quark
  • 18 篇 quark & gluon je...
  • 17 篇 machine learning
  • 17 篇 extensions of hi...
  • 15 篇 optimization
  • 14 篇 bottom quark
  • 14 篇 convergence
  • 14 篇 particle product...
  • 14 篇 stochastic syste...
  • 14 篇 training

机构

  • 278 篇 irfu cea univers...
  • 206 篇 infn sezione di ...
  • 203 篇 yerevan physics ...
  • 175 篇 centro brasileir...
  • 174 篇 indian institute...
  • 173 篇 academy of scien...
  • 172 篇 university of sp...
  • 167 篇 faculty of scien...
  • 167 篇 department for p...
  • 167 篇 west university ...
  • 166 篇 kirchhoff-instit...
  • 165 篇 department of mo...
  • 165 篇 infn e laborator...
  • 164 篇 department of ph...
  • 163 篇 infn sezione di ...
  • 160 篇 charles universi...
  • 158 篇 department physi...
  • 158 篇 department of ph...
  • 153 篇 deutsches elektr...
  • 152 篇 department of ph...

作者

  • 194 篇 m. lu
  • 115 篇 c. alexa
  • 115 篇 g. bella
  • 115 篇 d. calvet
  • 115 篇 c. amelung
  • 113 篇 j. strandberg
  • 113 篇 f. pastore
  • 112 篇 j. m. izen
  • 112 篇 b. konya
  • 111 篇 n. orlando
  • 109 篇 y. tayalati
  • 106 篇 t. pham
  • 104 篇 g. spigo
  • 103 篇 s. barsov
  • 103 篇 v. chiarella
  • 100 篇 f. siegert
  • 98 篇 a. dimitrievska
  • 98 篇 f. deliot
  • 96 篇 r. ströhmer
  • 95 篇 t. r. van daalen

语言

  • 1,379 篇 英文
  • 225 篇 其他
  • 29 篇 中文
检索条件"机构=MoE Key Laboratory in Scientific and Engineering Computing"
1633 条 记 录,以下是771-780 订阅
排序:
Ergodic optimization theory for axiom a flows
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Wen Lian, Zeng Ma, Xiao Xu, Leiye Zhang, Yiwei Wu Wen-Tsun Key Laboratory of Mathematics USTC Chinese Academy of Sciences Department of Mathematics University of Science and Technology of China Hefei Anhui China College of Mathematical Sciences Sichuan University Chengdu Sichuan610016 China School of Mathematics and Statistics Center for Mathematical Sciences Hubei Key Laboratory of Engineering Modeling and Scientific Computing Hua-Zhong University of Sciences and Technology Wuhan430074 China
In this article, we consider the weighted ergodic optimization problem Axiom A attractors of a C2flow on a compact smooth manifold. The main result obtained in this paper is that for a generic observable from function... 详细信息
来源: 评论
Community detection by a riemannian projected proximal gradient method
arXiv
收藏 引用
arXiv 2020年
作者: Wei, Meng Huang, Wen Gallivan, Kyle A. van Dooren, Paul Department of Mathematics Florida State University 208 Love Building 1017 Academic Way TallahasseeFL32306-4510 United States School of Mathematical Sciences Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing Xiamen University XiamenFujian361005 China Department of Mathematics Florida State University 208 Love Building 1017 Academic Way TallahasseeFL32306-4510 United States Department of Mathematical Engineering Université catholique de Louvain Louvain-La-Neuve Belgium
Community detection plays an important role in understanding and exploiting the structure of complex systems. Many algorithms have been developed for community detection using modularity maximization or other techniqu... 详细信息
来源: 评论
Toward a MapReduce-Based K-Means Method for Multi-dimensional Time Serial Data Clustering  17th
Toward a MapReduce-Based K-Means Method for Multi-dimensiona...
收藏 引用
17th International Conference on Intelligent Systems Design and Applications, ISDA 2017
作者: Lin, Yongzheng Ma, Kun Sun, Runyuan Abraham, Ajith School of Information Science and Engineering University of Jinan Jinan250022 China Shandong Provincial Key Laboratory of Network Based Intelligent Computing University of Jinan Jinan250022 China Scientific Network for Innovation and Research Excellence AuburnWA98071 United States
Time series data is a sequence of real numbers that represent the measurements of a real variable at equal time intervals. There are some bottlenecks to process large scale data. In this paper, we firstly propose a K-... 详细信息
来源: 评论
Unique continuation properties for one dimensional higher order Schrödinger equations
arXiv
收藏 引用
arXiv 2019年
作者: Huang, Tianxiao Huang, Shanlin Zheng, Quan Sun Yat-sen University Guangdong Zhuhai519082 China School of Mathematics and Statistics Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Hubei Wuhan430074 China School of Mathematics and Statistics Huazhong University of Science and Technology Hubei Wuhan430074 China
We study two types of unique continuation properties for the higher order Schrödinger equation with potential i∂tu = (−∆x)mu + V(t, x)u, (t, x) ∈ 1+n, 2 ≤ m ∈ N+. The first one says if u has certain exponentia... 详细信息
来源: 评论
Nonlocal TV-Gaussian (NLTG) prior for Bayesian inverse problems with applications to Limited CT Reconstruction
arXiv
收藏 引用
arXiv 2019年
作者: Lv, Didi Zhou, Qingping Choi, Jae Kyu Li, Jinglai Zhang, Xiaoqun School of Mathematical Sciences Shanghai Jiao Tong University Shanghai200240 China Institute of Natural Sciences Shanghai Jiao Tong University Shanghai200240 China School of Mathematical Sciences Tongji University Shanghai200082 China Department of Mathematical Sciences University of Liverpool LiverpoolL69 6ZL United Kingdom MOE Key Laboratory of Scientific and Engineering Computing Shanghai Jiao Tong University Shanghai200240 China
Bayesian inference methods have been widely applied in inverse problems, largely due to their ability to characterize the uncertainty associated with the estimation results. In the Bayesian framework the prior distrib... 详细信息
来源: 评论
Sparse representation of gaussian molecular surface
arXiv
收藏 引用
arXiv 2019年
作者: Gui, Sheng Chen, Minxin Lu, Benzhuo STATE KEY LABORATORY of SCIENTIFIC and ENGINEERING COMPUTING NATIONAL CENTER for MATHEMATICS and INTERDISCIPLINARY SCIENCES ACADEMY of MATHEMATICS and SYSTEMS SCIENCE CHINESE ACADEMY of SCIENCES BEIJING100190 China SCHOOL of MATHEMATICAL SCIENCES UNIVERSITY of CHINESE ACADEMY of SCIENCES BEIJING100049 China DEPARTMENT of MATHEMATICS SOOCHOW UNIVERSITY SUZHOU215006 China
In this paper, we propose a model and algorithm for sparse representing Gaussian molecular surface. The original Gaussian molecular surface is approximated by a relatively small number of radial basis functions (RBFs)... 详细信息
来源: 评论
Collisionless periodic orbits in the free-fall three-body problem
arXiv
收藏 引用
arXiv 2018年
作者: Li, Xiaoming Liao, Shijun Centre of Advanced Computing School of Naval Architecture Ocean and Civil Engineering Shanghai Jiaotong University China Ministry-of-Education Key Laboratory in Scientific and Engineering Computing Shanghai200240 China
Although the free-fall three-body problem have been investigated for more than one century, however, only four collisionless periodic orbits have been found. In this paper, we report 234 collisionless periodic orbits ...
来源: 评论
An initial attempt of converged machine-learning assisted turbulence modeling in RANS simulations with eddy-viscosity hypothesis
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Weishuo Fang, Jian Rolfo, Stefano Lu, Lipeng National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics School of Energy and Power Engineering Beihang University 37 Xueyuan Road Haidian District Beijing100191 China Scientific Computing Department Science and Technology Facilities Council Daresbury Laboratory Keckwick Lane Daresbury WarringtonWA4 4AD United Kingdom
This work presents a converged framework of Machine-Learning Assisted Turbulence Modeling (MLATM). Our objective is to develop a turbulence model directly learning from high fidelity data (DNS/LES) with eddy-viscosity... 详细信息
来源: 评论
General propagation lattice Boltzmann model for nonlinear advection-diffusion equations
收藏 引用
Physical Review E 2018年 第4期97卷 043310-043310页
作者: Xiuya Guo Baochang Shi Zhenhua Chai School of Mathematics and Statistics Huazhong University of Science and Technology Wuhan 430074 China Hubei Key Laboratory of Engineering Modeling and Scientific Computing Huazhong University of Science and Technology Wuhan 430074 China
In this paper, a general propagation lattice Boltzmann model is proposed for nonlinear advection-diffusion equations (NADEs), and the Chapman-Enskog analysis shows that the NADEs with variable coefficients can be reco... 详细信息
来源: 评论
SVM-based deep stacking networks
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Jingyuan Feng, Kai Wu, Junjie MOE Engineering Research Center of Advanced Computer Application Technology School of Computer Science Engineering Beihang University Beijing100191 China Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operations School of Economics and Management Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
The deep network model, with the majority built on neural networks, has been proved to be a powerful framework to represent complex data for high performance machine learning. In recent years, more and more studies tu... 详细信息
来源: 评论