咨询与建议

限定检索结果

文献类型

  • 76 篇 会议
  • 72 篇 期刊文献

馆藏范围

  • 148 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 100 篇 工学
    • 78 篇 计算机科学与技术...
    • 63 篇 软件工程
    • 35 篇 信息与通信工程
    • 18 篇 控制科学与工程
    • 12 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 9 篇 光学工程
    • 5 篇 材料科学与工程(可...
    • 5 篇 网络空间安全
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 3 篇 测绘科学与技术
    • 3 篇 交通运输工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 化学工程与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 生物工程
  • 39 篇 理学
    • 21 篇 数学
    • 13 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 4 篇 生物学
    • 2 篇 化学
    • 2 篇 系统科学
    • 1 篇 天文学
    • 1 篇 地球物理学
  • 34 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 3 篇 教育学
    • 3 篇 教育学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 8 篇 semantics
  • 7 篇 semantic segment...
  • 7 篇 accuracy
  • 6 篇 image segmentati...
  • 6 篇 contrastive lear...
  • 5 篇 image coding
  • 5 篇 robustness
  • 4 篇 three-dimensiona...
  • 4 篇 signal processin...
  • 4 篇 decoding
  • 3 篇 collaborative fi...
  • 3 篇 recommender syst...
  • 3 篇 speech processin...
  • 3 篇 acoustics
  • 3 篇 graph neural net...
  • 3 篇 visualization
  • 3 篇 pixels
  • 3 篇 codes
  • 3 篇 diffusion models
  • 3 篇 solid modeling

机构

  • 89 篇 moe key laborato...
  • 17 篇 university of sc...
  • 15 篇 institute of art...
  • 11 篇 moe key laborato...
  • 10 篇 university of sc...
  • 10 篇 noah's ark lab h...
  • 7 篇 national univers...
  • 6 篇 iflytek research
  • 6 篇 cas key laborato...
  • 5 篇 shanghai jiao to...
  • 5 篇 cas key laborato...
  • 5 篇 cas key laborato...
  • 5 篇 institute of art...
  • 5 篇 college of intel...
  • 5 篇 tianjin universi...
  • 5 篇 anhui province k...
  • 4 篇 shanghaitech uni...
  • 4 篇 noah's ark lab h...
  • 4 篇 noah’s ark lab h...
  • 4 篇 moe key laborato...

作者

  • 22 篇 wang jie
  • 20 篇 wu feng
  • 18 篇 li li
  • 16 篇 liu dong
  • 14 篇 li bin
  • 11 篇 sun xiaoyan
  • 11 篇 zhang yueyi
  • 11 篇 li houqiang
  • 10 篇 jie wang
  • 9 篇 zhao feng
  • 9 篇 feng wu
  • 9 篇 wang xiang
  • 8 篇 zhou wengang
  • 8 篇 hao jianye
  • 8 篇 xiong zhiwei
  • 7 篇 zhang yongdong
  • 7 篇 huang jie
  • 7 篇 wu jiancan
  • 7 篇 li xijun
  • 7 篇 geng zijie

语言

  • 80 篇 其他
  • 68 篇 英文
检索条件"机构=MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition"
148 条 记 录,以下是1-10 订阅
排序:
Beyond Pixel and Object: Part Feature as Reference for Few-Shot Video Object Segmentation  39
Beyond Pixel and Object: Part Feature as Reference for Few-S...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Luo, Naisong Xiong, Guoxin Zhang, Tianzhu MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China China
Few-Shot Video Object Segmentation (FSVOS) aims to achieve accurate segmentation of video sequences supported by limited annotated images. In this work, we analyze the deficiencies inherent in the use of object protot...
来源: 评论
Learning Complementary Maps for Light Field Salient Object Detection  17th
Learning Complementary Maps for Light Field Salient Object ...
收藏 引用
17th Asian Conference on Computer Vision, ACCV 2024
作者: Xiao, Zeyu Shou, Jiateng Xiong, Zhiwei MoE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Light field imaging presents a promising avenue for advancing salient object detection (SOD). However, existing light field SOD (LFSOD) methods grapple with challenges related to effectively aggregating features from ... 详细信息
来源: 评论
DiffLoss: Unleashing Diffusion Model as Constraint for Training Image Restoration Network  17th
DiffLoss: Unleashing Diffusion Model as Constraint for Tra...
收藏 引用
17th Asian Conference on Computer Vision, ACCV 2024
作者: Tan, Jiangtong Yu, Hu Huang, Jie Yang, Zizheng Zhao, Feng MoE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Image restoration aims to enhance low-quality images, producing high-quality images that exhibit natural visual characteristics and fine semantic attributes. Recently, the diffusion model has emerged as a powerful tec... 详细信息
来源: 评论
Neural Krylov Iteration for Accelerating Linear System Solving  38
Neural Krylov Iteration for Accelerating Linear System Solvi...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Luo, Jian Wang, Jie Wang, Hong Dong, Huanshuo Geng, Zijie Chen, Hanzhu Kuang, Yufei MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China China
Solving large-scale sparse linear systems is essential in fields like mathematics, science, and engineering. Traditional numerical solvers, mainly based on the Krylov subspace iteration algorithm, suffer from the low-...
来源: 评论
Uncertainty-based Offline Variational Bayesian Reinforcement Learning for Robustness under Diverse Data Corruptions  38
Uncertainty-based Offline Variational Bayesian Reinforcement...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Yang, Rui Wang, Jie Wu, Guoping Li, Bin University of Science and Technology of China China MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition China
Real-world offline datasets are often subject to data corruptions (such as noise or adversarial attacks) due to sensor failures or malicious attacks. Despite advances in robust offline reinforcement learning (RL), exi...
来源: 评论
Hierarchical Augmentation Consistency Learning for Semi-Supervised Medical Image Segmentation  22
Hierarchical Augmentation Consistency Learning for Semi-Supe...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Xiao, Yusong Xiao, Li University of Science and Technology of China MoE Key Laboratory of Brain-Inspired Intelligent Perception and Cognition Hefei230052 China
While convolutional neural network (CNN) based methods have driven pivotal advancements in medical image segmentation, they remain constrained by the heavy reliance on large-scale labeled datasets. Semi-supervised lea... 详细信息
来源: 评论
Training Pansharpening Networks at Full Resolution Using Degenerate Invariance  24
Training Pansharpening Networks at Full Resolution Using Deg...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Qu, Yichang Li, Bing Huang, Jie Zhao, Feng MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Pansharpening is an important technique for remote sensing imaging systems to obtain high-resolution multispectral images. Existing deep learning-based methods mostly rely on using pseudo-groundtruth multi-spectral im... 详细信息
来源: 评论
FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining  24
FreqMamba: Viewing Mamba from a Frequency Perspective for Im...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Zou, Zhen Yu, Hu Huang, Jie Zhao, Feng MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Images corrupted by rain streaks often lose vital frequency information for perception, and image deraining aims to solve this problem, which relies on global and local degradation modeling. Recent studies have witnes... 详细信息
来源: 评论
Semantic Segmentation-Based Low-Rate Image Communication With Diffusion Models  16
Semantic Segmentation-Based Low-Rate Image Communication Wit...
收藏 引用
16th International Conference on Wireless Communications and Signal Processing, WCSP 2024
作者: Huang, Jun Liu, Chang Liu, Dong Moe Key Laboratory of Brain-Inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Semantic communication aims to transmit the underlying semantic information of a signal from the sender to the receiver, where the key requirement is to ensure that the receiver reconstructs a signal semantically (alm... 详细信息
来源: 评论
Hierarchical Supervised Contrastive Learning for Multimodal Sentiment Analysis  1
收藏 引用
30th International Conference on MultiMedia Modeling, MMM 2024
作者: Chen, Kezhou Wang, Shuo Hao, Yanbin MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition University of Science and Technology of China Hefei China
Multimodal sentiment analysis (MSA) is dedicated to deciphering human emotions in videos. It is a challenging task due to the semantic disparities among various modalities (e.g., linguistic, visual, and acoustic) pres... 详细信息
来源: 评论