作者:
SEJD, JJWATKINSON, KWHILL, WFMr. James J. Sejd received his B.S. degree in Civil Engineering from Case
Western Reserve University and has since undergone considerable graduate study at both The George Washington and American Universities. He served almost four years in the U.S. Navy as a Naval Aviator and enjoys the unique distinction of being qualified in both Heavier- and Lighter-than-Air aircraft. Early in his career he was employed at the Navy's Bureau of Ships in the capacity of a Structural Designer and Structural Research Monitor. In 1966 he joined the Staff of the Center for Naval Analyses where he was involved in the mathematical modeling of ships and aircraft and in economic “trade-off‘ analysis. In 1970. he went to the Naval Ship Engineering Center as an Operations Research Analyst in the Ship Design and Development Division. At the present time he is employed as a Program Manager for the Naval Sea Systems Command Ship Design Research and Development Office. A member of ASNE since 1973 he also is a member of the Association of Scientists and Engineers at NAVSEA the Operations Research Society of America and the Lighter-Than-Air Society. Mr. Kenneth W. Watkinson received both is B.S. and M.S. degrees in Engineering Science from Florida State University in 1970 and 1971 respectively. Since graduation
he has been employed at the Naval Coastal Systems Center (NCSC). Panama City. Fla. where he is primarily involved in the investigation of the stability and control of underwater vehicles. For the past four years he has been the Task Leader and Principal Investigator for the NCSC portion of the Advanced Submarine Control Program involved in developing control design methods and the instrumentation system for the Submarine Control System Test Vehicle. Mr.
William F. Hill is currently the ASCOP Program Manager at Lockheed Missiles & Space Company (LMSC) Inc. where he has the overall responsibility for design and construction of the Control System Test Vehicle (CSTV). He entered the aircraft industry in England as an Apprentice w
As part of the Advanced Submarine Control program (ASCOP), the Naval Sea Systems Command has developed an open water Submarine Control System Test Vehicle (CSTV). This vehicle is a 1/12 scale model of an SSN 688 Class...
As part of the Advanced Submarine Control program (ASCOP), the Naval Sea Systems Command has developed an open water Submarine Control System Test Vehicle (CSTV). This vehicle is a 1/12 scale model of an SSN 688 Class Submarine, with provisions for easy geometric changes. Such changes include alternate Sail size and location, the addition of parallel middle-bodies, alternative tail sections, and alternative control configurations. A self-contained instrumentation and control system provides the capability for “on-board” recording of all relevant Submarine-state variables, over the entire speed and depth range, to a degree of data accuracy exceeding any known system. With the means thus available to correlate measured vehicle hydrodynamics with selected maneuvers, conditions, and changes in hull geometry and control surface configuration, modern mathematical techniques for improving submarine equations of motion can be employed to permit dramatic design enhancements in both safety and performance. This paper provides the rationale and history of the development of this vehicle, a description of the instrumentation and control package, and a description of the vehicle itself.
暂无评论