This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem...
详细信息
This work focuses on the temporal average of the backward Euler-Maruyama(BEM)method,which is used to approximate the ergodic limit of stochastic ordinary differential equations(SODEs).We give the central limit theorem(CLT)of the temporal average of the BEM method,which characterizes its asymptotics in *** the deviation order is smaller than the optimal strong order,we directly derive the CLT of the temporal average through that of original equations and the uniform strong order of the BEM *** the case that the deviation order equals to the optimal strong order,the CLT is established via the Poisson equation associated with the generator of original *** experiments are performed to illustrate the theoretical *** main contribution of this work is to generalize the existing CLT of the temporal average of numerical methods to that for SODEs with super-linearly growing drift coefficients.
In the field of speech recognition, enhancing accuracy is paramount for diverse linguistic communities. Our study addresses this necessity, focusing on improving Amazigh speech recognition through the implementation o...
详细信息
In this paper, we design and analyze a space-time spectral method for the subdiffusion ***, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the initial time. ...
详细信息
In this paper, we design and analyze a space-time spectral method for the subdiffusion ***, we are facing two difficulties. The first is that the solutions of this equation are usually singular near the initial time. Consequently, traditional high-order numerical methods in time are inefficient. The second obstacle is that the resulting system of the space-time spectral approach is usually large and time-consuming to solve. We aim at overcoming the first difficulty by proposing a novel approach in time, which is based on variable transformation techniques. Suitable ψ-fractional Sobolev spaces and a new variational framework are introduced to establish the well-posedness of the associated variational problem. This allows us to construct our space-time spectral method using a combination of temporal generalized Jacobi polynomials(GJPs) and spatial Legendre polynomials. For the second difficulty, we propose a fast algorithm to effectively solve the resulting linear system. The fast algorithm makes use of a matrix diagonalization in space and QZ decomposition in time. Our analysis and numerical experiments show that the proposed method is exponentially convergent with respect to the polynomial degrees in both space and time directions, even though the exact solution has very limited regularity.
In this paper the author investigates the following predator-prey model with prey-taxis and rotational?ux terms■in a bounded domain with smooth *** presents the global existence of generalized solutions to the model...
详细信息
In this paper the author investigates the following predator-prey model with prey-taxis and rotational?ux terms■in a bounded domain with smooth *** presents the global existence of generalized solutions to the model■in any dimension.
In this study, we developed a speech recognition system for the Amazigh language, specifically targeting the recognition of the initial ten numbers. The system employs four Convolutional Neural Network (CNN) models, i...
详细信息
The field of speech recognition makes it simpler for humans and machines to engage with speech. Number-oriented communication, such as using a registration code, mobile number, score, or account number, can benefit fr...
详细信息
In this paper,the authors consider the stabilization and blow up of the wave equation with infinite memory,logarithmic nonlinearity and acoustic boundary *** authors discuss the existence of global solutions for the i...
详细信息
In this paper,the authors consider the stabilization and blow up of the wave equation with infinite memory,logarithmic nonlinearity and acoustic boundary *** authors discuss the existence of global solutions for the initial energy less than the depth of the potential well and investigate the energy decay estimates by introducing a Lyapunov ***,the authors establish the finite time blow up results of solutions and give the blow up time with upper bounded initial energy.
This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs) with time-variable delay. For solving this kind of delay BVPs, by combining Runge-Kutta methods with Lagrange interpola...
详细信息
This paper deals with numerical solutions for nonlinear first-order boundary value problems(BVPs) with time-variable delay. For solving this kind of delay BVPs, by combining Runge-Kutta methods with Lagrange interpolation, a class of adapted Runge-Kutta(ARK) methods are developed. Under the suitable conditions, it is proved that ARK methods are convergent of order min{p, μ+ν +1}, where p is the consistency order of ARK methods and μ, ν are two given parameters in Lagrange interpolation. Moreover, a global stability criterion is derived for ARK methods. With some numerical experiments, the computational accuracy and global stability of ARK methods are further testified.
This paper proposes a more general and complicated synchronization scheme, termed full states pseudo-random projective synchronization (FSPRPS). In this synchronization scheme, the scaling factor is a function matrix ...
详细信息
In this paper, we consider a susceptible-infective-susceptible(SIS) reaction-diffusion epidemic model with spontaneous infection and logistic source in a periodically evolving domain. Using the iterative technique,the...
详细信息
In this paper, we consider a susceptible-infective-susceptible(SIS) reaction-diffusion epidemic model with spontaneous infection and logistic source in a periodically evolving domain. Using the iterative technique,the uniform boundedness of solution is established. In addition, the spatial-temporal risk index R0(ρ) depending on the domain evolution rate ρ(t) as well as its analytical properties are discussed. The monotonicity of R0(ρ)with respect to the diffusion coefficients of the infected dI, the spontaneous infection rate η(ρ(t)y) and interval length L is investigated under appropriate conditions. Further, the existence and asymptotic behavior of periodic endemic equilibria are explored by upper and lower solution method. Finally, some numerical simulations are presented to illustrate our analytical results. Our results provide valuable information for disease control and prevention.
暂无评论