咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 理学
    • 7 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 天文学
  • 7 篇 工学
    • 4 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 公共管理

主题

  • 2 篇 machine learning
  • 1 篇 covid-19
  • 1 篇 dynamical system...
  • 1 篇 partial differen...
  • 1 篇 uncertainty anal...
  • 1 篇 malaria
  • 1 篇 biogeography
  • 1 篇 infectious disea...
  • 1 篇 reynolds number
  • 1 篇 feedforward neur...
  • 1 篇 asymptotic stabi...
  • 1 篇 epidemiology

机构

  • 8 篇 modelling engine...
  • 6 篇 dipartimento di ...
  • 3 篇 department of ot...
  • 3 篇 department of ph...
  • 3 篇 department of mi...
  • 3 篇 health managemen...
  • 3 篇 health systems a...
  • 3 篇 south african me...
  • 3 篇 institute of ger...
  • 3 篇 institute for ep...
  • 3 篇 institute of sci...
  • 3 篇 center of comple...
  • 3 篇 julius centre fo...
  • 3 篇 department of gl...
  • 3 篇 razi vaccine and...
  • 3 篇 centre for heart...
  • 2 篇 preventive medic...
  • 2 篇 the george insti...
  • 2 篇 department of pa...
  • 2 篇 department of co...

作者

  • 7 篇 siettos constant...
  • 5 篇 fabiani gianluca
  • 4 篇 russo lucia
  • 3 篇 abosetugn akine ...
  • 3 篇 anvari davood
  • 3 篇 adetokunboh olat...
  • 3 篇 appiah seth chri...
  • 3 篇 abu-gharbieh ema...
  • 3 篇 bhattacharyya kr...
  • 3 篇 alahdab fares
  • 3 篇 ausloos marcel
  • 3 篇 patsatzis dimitr...
  • 2 篇 bhandari dinesh
  • 2 篇 kisa sezer
  • 2 篇 krishan kewal
  • 2 篇 altirkawi khalid...
  • 2 篇 bärnighausen til...
  • 2 篇 kabir ali
  • 2 篇 cook aubrey j.
  • 2 篇 daoud farah

语言

  • 10 篇 英文
  • 2 篇 其他
检索条件"机构=Modelling Engineering Risk and Complexity"
12 条 记 录,以下是1-10 订阅
排序:
RANDOM PROJECTION NEURAL NETWORKS OF BEST APPROXIMATION: CONVERGENCE THEORY AND PRACTICAL APPLICATIONS
arXiv
收藏 引用
arXiv 2024年
作者: Fabiani, Gianluca Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy
We investigate the concept of Best Approximation for Feedforward Neural Networks (FNN) and explore their convergence properties through the lens of Random Projection (RPNNs). RPNNs have predetermined and fixed, once a... 详细信息
来源: 评论
A PHYSICS-INFORMED NEURAL NETWORK METHOD FOR THE APPROXIMATION OF SLOW INVARIANT MANIFOLDS FOR THE GENERAL CLASS OF STIFF SYSTEMS OF ODES
arXiv
收藏 引用
arXiv 2024年
作者: Patsatzis, Dimitrios G. Russo, Lucia Siettos, Constantinos Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Institute of Science and Technology for Energy and Sustainable Mobility Consiglio Nazionale delle Ricerche Naples80125 Italy Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy
We present a physics-informed neural network (PINN) approach for the discovery of slow invariant manifolds (SIMs), for the most general class of fast/slow dynamical systems of ODEs. In contrast to other machine learni... 详细信息
来源: 评论
LEARNING THE LATENT DYNAMICS OF FLUID FLOWS FROM HIGH-FIDELITY NUMERICAL SIMULATIONS USING PARSIMONIOUS DIFFUSION MAPS
arXiv
收藏 引用
arXiv 2024年
作者: Pia, Alessandro Della Patsatzis, Dimitris Russo, Lucia Siettos, Constantinos Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Institute of Science and Technology for Energy and Sustainable Mobility Consiglio Nazionale delle Ricerche Naples80125 Italy Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy
We use parsimonious diffusion maps (PDMs) to discover the latent dynamics of high-fidelity Navier-Stokes simulations with a focus on the 2D fluidic pinball problem. By varying the Reynolds number, different flow regim... 详细信息
来源: 评论
GORINNS: GODUNOV-RIEMANN INFORMED NEURAL NETWORKS FOR LEARNING HYPERBOLIC CONSERVATION LAWS
arXiv
收藏 引用
arXiv 2024年
作者: Patsatzis, Dimitrios G. di Bernardo, Mario Russo, Lucia Siettos, Constantinos Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples Italy Dept. of Electrical Engineering and Information Technology University of Naples Federico II Naples Italy Institute of Science and Technology for Energy and Sustainable Mobility Consiglio Nazionale delle Ricerche Naples Italy Dept. of Mathematics and Applications "Renato Caccioppoli" University of Naples Federico II Naples Italy
We present GoRINNs: numerical analysis-informed neural networks for the solution of inverse problems of non-linear systems of conservation laws. GoRINNs are based on high-resolution Godunov schemes for the solution of... 详细信息
来源: 评论
STABILITY ANALYSIS OF PHYSICS-INFORMED NEURAL NETWORKS FOR STIFF LINEAR DIFFERENTIAL EQUATIONS A PREPRINT
arXiv
收藏 引用
arXiv 2024年
作者: Fabiani, Gianluca Bollt, Erik Siettos, Constantinos Yannacopoulos, Athanasios N. Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Dept. of Electrical and Computer Engineering Clarkson University PotsdamNY United States Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy Department of Statistics Athens University of Economics and Business Greece
We present a stability analysis of Physics-Informed Neural Networks (PINNs) coupled with random projections, for the numerical solution of (stiff) linear differential equations. For our analysis, we consider systems o... 详细信息
来源: 评论
SLOW INVARIANT MANIFOLDS OF SINGULARLY PERTURBED SYSTEMS VIA PHYSICS-INFORMED MACHINE LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Patsatzis, Dimitrios G. Fabiani, Gianluca Russo, Lucia Siettos, Constantinos Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Institute of Science and Technology for Energy and Sustainable Mobility Consiglio Nazionale delle Ricerche Naples80125 Italy Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifolds (SIMs) of singularly perturbed systems, providing functionals in an explicit form that facilitate the co... 详细信息
来源: 评论
TIMESCALE DYNAMICS OF COVID-19 PANDEMIC WAVES: THE CASE OF GREECE
arXiv
收藏 引用
arXiv 2023年
作者: Manias, Dimitris M. Patsatzis, Dimitris G. Goussis, Dimitris A. Department of Mathematics Khalifa University of Science and Technology Abu Dhabi127788 United Arab Emirates Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Department of Mechanical Engineering Khalifa University of Science and Technology Abu Dhabi127788 United Arab Emirates Research and Innovation Center on CO2 and H2 Khalifa University of Science and Technology Abu Dhabi127788 United Arab Emirates
The results of an alternative methodology for making predictions about the COVID-19 pandemic in Greece are presented. Instead of focusing on the various population profiles (subjected to instabilities introduced by th... 详细信息
来源: 评论
NONLINEAR DISCRETE-TIME OBSERVERS WITH PHYSICS-INFORMED NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2024年
作者: Alvarez, Hector Vargas Fabiani, Gianluca Kevrekidis, Ioannis G. Kazantzis, Nikolaos Siettos, Constantinos Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Department of Chemical and Biomolecular Engineering Johns Hopkins University BaltimoreMD21218 United States Department of Chemical Engineering Worcester Polytechnic Institute WorcesterMA01609 United States Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy Department of Applied Mathematics and Statistics Johns Hopkins University BaltimoreMD21218 United States Department of Urology School of Medicine Johns Hopkins University BaltimoreMD21218 United States
We use Physics-Informed Neural Networks (PINNs) to solve the discrete-time nonlinear observer state estimation problem. Integrated within a single-step exact observer linearization framework, the proposed PINN approac... 详细信息
来源: 评论
TASKS MAKYTH MODELS: MACHINE LEARNING ASSISTED SURROGATES FOR TIPPING POINTS
arXiv
收藏 引用
arXiv 2023年
作者: Fabiani, Gianluca Evangelou, Nikolaos Cui, Tianqi Bello-Rivas, Juan M. Martin-Linares, Cristina Siettos, Constantinos Kevrekidis, Ioannis G. Modelling Engineering Risk and Complexity Scuola Superiore Meridionale Naples80138 Italy Dept. of Chemical and Biomolecular Engineering Johns Hopkins University BaltimoreMD21218 United States Dept. of Mechanical Engineering Johns Hopkins University BaltimoreMD21218 United States Dipartimento di Matematica e Applicazioni "Renato Caccioppoli" Università degli Studi di Napoli Federico II Naples80126 Italy Dept. of Applied Mathematics and Statistics Johns Hopkins University BaltimoreMD21218 United States School of Medicine’s Dept. of Urology Johns Hopkins University BaltimoreMD21218 United States
We present a machine learning (ML)-assisted framework bridging manifold learning, neural networks, Gaussian processes, and Equation-Free multiscale modeling, for (a) detecting tipping points in the emergent behavior o... 详细信息
来源: 评论
The overlapping burden of the three leading causes of disability and death in sub-Saharan African children
收藏 引用
Nature Communications 2022年 第1期13卷 1-14页
作者: Reiner, Robert C. Welgan, Catherine A. Troeger, Christopher E. Baumann, Mathew M. Weiss, Daniel J. Deshpande, Aniruddha Blacker, Brigette F. Miller-Petrie, Molly K. Earl, Lucas Bhatt, Samir Abolhassani, Hassan Abosetugn, Akine Eshete Abu-Gharbieh, Eman Adekanmbi, Victor Adetokunboh, Olatunji O. Aghaali, Mohammad Aji, Budi Alahdab, Fares Al-Aly, Ziyad Alhassan, Robert Kaba Ali, Saqib Alizade, Hesam Aljunid, Syed Mohamed Almasi-Hashiani, Amir Al-Mekhlafi, Hesham M. Altirkawi, Khalid A. Alvis-Guzman, Nelson Amare, Azmeraw T. Amini, Saeed Amugsi, Dickson A. Ancuceanu, Robert Andrei, Catalina Liliana Ansari, Fereshteh Anvari, Davood Appiah, Seth Christopher Yaw Arabloo, Jalal Aremu, Olatunde Atout, Maha Moh’d Wahbi Ausloos, Marcel Ausloos, Floriane Ayanore, Martin Amogre Aynalem, Yared Asmare Azene, Zelalem Nigussie Badawi, Alaa Baig, Atif Amin Banach, Maciej Bedi, Neeraj Bhagavathula, Akshaya Srikanth Bhandari, Dinesh Bhardwaj, Nikha Bhardwaj, Pankaj Bhattacharyya, Krittika Bhutta, Zulfiqar A. Bijani, Ali Birhanu, Tesega Tesega Mengistu Bitew, Zebenay Workneh Boloor, Archith Brady, Oliver J. Butt, Zahid A. Car, Josip Carvalho, Felix Casey, Daniel C. Chattu, Vijay Kumar Chowdhury, Mohiuddin Ahsanul Kabir Chu, Dinh-Toi Coelho, Camila H. Cook, Aubrey J. Damiani, Giovanni Daoud, Farah Gela, Jiregna Darega Darwish, Amira Hamed Daryani, Ahmad Das, Jai K. Davis Weaver, Nicole Deribe, Kebede Desalew, Assefa Dharmaratne, Samath Dhamminda Dianatinasab, Mostafa Diaz, Daniel Djalalinia, Shirin Dorostkar, Fariba Dubljanin, Eleonora Duko, Bereket Dwyer-Lindgren, Laura Effiong, Andem El Sayed Zaki, Maysaa El Tantawi, Maha Enany, Shymaa Fattahi, Nazir Feigin, Valery L. Fernandes, Eduarda Ferrara, Pietro Fischer, Florian Foigt, Nataliya A. Folayan, Morenike Oluwatoyin Foroutan, Masoud Frostad, Joseph Jon Fukumoto, Takeshi Gaidhane, Abhay Motiramji Gebrekrstos, Hailemikael Gebrekidan G. K. Gebremeskel, Leake Gebreslassie, Assefa Ayalew Gething, Peter W. Gezae, Kebede Embaye Ghadiri, Keyghobad Ghashghaee, Ahmad Golechha, Mahaveer Gubar Institute for Health Metrics and Evaluation University of Washington Seattle WA United States Department of Health Metrics Sciences School of Medicine University of Washington Seattle WA United States Malaria Atlas Project University of Oxford Oxford United Kingdom Imperial College London London United Kingdom Department of Laboratory Medicine Karolinska University Hospital Huddinge Sweden Research Center for Immunodeficiencies Tehran University of Medical Sciences Tehran Iran Department of Public Health Debre Berhan University Debre Berhan Ethiopia Department of Clinical Sciences University of Sharjah Sharjah United Arab Emirates Population Health Sciences King’s College London London United Kingdom Centre of Excellence for Epidemiological Modelling and Analysis Stellenbosch University Stellenbosch South Africa Department of Global Health Stellenbosch University Cape Town South Africa Department of Epidemiology and Biostatistics Qom University of Medical Sciences Qom Iran Faculty of Medicine and Public Health Jenderal Soedirman University Purwokerto Indonesia Mayo Evidence-based Practice Center Mayo Clinic Foundation for Medical Education and Research Rochester MN United States John T. Milliken Department of Internal Medicine Washington University in St. Louis St. Louis MO United States Clinical Epidemiology Center Department of Veterans Affairs St Louis MO United States Institute of Health Research University of Health and Allied Sciences Ho Ghana Department of Information Systems College of Economics and Political Science Sultan Qaboos University Muscat Oman Infectious and Tropical Disease Research Center Hormozgan University of Medical Sciences Bandar Abbas Iran Department of Health Policy and Management Kuwait University Safat Kuwait International Centre for Casemix and Clinical Coding National University of Malaysia Bandar Tun Razak Malaysia Department of Epidemiology Arak University of Medical Sciences Arak Iran Medical Research Center
Despite substantial declines since 2000, lower respiratory infections (LRIs), diarrhoeal diseases, and malaria remain among the leading causes of nonfatal and fatal disease burden for children under 5 years of age (un... 详细信息
来源: 评论