An amide 1 H‐Chemical Exchange Saturation Transfer (CEST) experiment is presented for studies of conformational exchange in proteins. The approach, exploiting spin‐state‐selective magnetization transfer, completely...
详细信息
An amide 1 H‐Chemical Exchange Saturation Transfer (CEST) experiment is presented for studies of conformational exchange in proteins. The approach, exploiting spin‐state‐selective magnetization transfer, completely suppresses undesired NOE‐based dips in CEST profiles so that chemical exchange processes can be studied. The methodology is demonstrated with applications involving proteins that interconvert on the millisecond timescale between major and invisible minor states, and accurate amide 1 H chemical shifts of the minor conformer are obtained in each case. The spin‐state‐selective magnetization transfer approach offers unique possibilities for quantitative studies of protein exchange through 1 H‐CEST.
A triple‐quantum 1 H Carr–Purcell–Meiboom–Gill NMR relaxation dispersion experiment is presented that uses methyl group probes as reporters of conformational exchange in highly deuterated, methyl‐protonated prote...
详细信息
A triple‐quantum 1 H Carr–Purcell–Meiboom–Gill NMR relaxation dispersion experiment is presented that uses methyl group probes as reporters of conformational exchange in highly deuterated, methyl‐protonated proteins. Significantly larger dispersion profiles, by as much as a factor of nine, can be obtained relative to single‐quantum approaches, thus offering very significant advantages in applications involving interconverting conformers with only small changes in structure or in studies of rare states that are at very low populations. Applications to a number of protein systems are presented where the utility of the method, including its improved sensitivity to chemical exchange processes, is established.
Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis® and diflunisal, inhibit TTR misfol...
Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis® and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.e. monomers), we achieved fibril inhibition at substoichiometric concentrations. We developed an antibody (misTTR) that targets TTR residues 89-97, an epitope buried in the tetramer but exposed in the monomer. Nanomolar misTTR inhibits fibrillogenesis of misfolded TTR under micromolar concentrations. Pan-specific TTR antibodies do not possess such fibril inhibiting properties. We show that selective targeting of misfolding intermediates is an alternative to native state stabilization and requires substoichiometric concentrations. MisTTR or its derivative may have both diagnostic and therapeutic potential.
Background: The classic myelin basic protein (MBP) isoforms are intrinsically-disordered proteins of 14-21.5 kDa in size arising from the Golli (Gene in the Oligodendrocyte Lineage) gene complex, and are responsible f...
详细信息
Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifyin...
详细信息
Chemical exchange saturation transfer (CEST) NMR spectroscopy is a powerful tool for studies of slow timescale protein dynamics. Typical experiments are based on recording a large number of 2D data sets and quantifying peak intensities in each of the resulting planes. A weakness of the method is that peaks must be resolved in 2D spectra, limiting applications to relatively small proteins. Resolution is significantly improved in 3D spectra but recording uniformly sampled data is time‐prohibitive. Here we describe non‐uniformly sampled HNCO‐based pseudo‐4D CEST that provides excellent resolution in reasonable measurement times. Data analysis is done through fitting in the time domain, without the need of reconstructing the frequency dimensions, exploiting previously measured accurate peak positions in reference spectra. The methodology is demonstrated on several protein systems, including a nascent form of superoxide dismutase that is implicated in neurodegenerative disease.
A1 functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mits...
A1 functional advantages of cell-type heterogeneity in neural circuits Tatyana O. Sharpee A2 Mesoscopic modeling of propagating waves in visual cortex Alain Destexhe A3 Dynamics and biomarkers of mental disorders Mitsuo Kawato F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons Vladislav Sekulić, Frances K. Skinner F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks. Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi O3 Modeling auditory stream segregation, build-up and bistability James Rankin, Pamela Osborn Popp, John Rinzel O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields Alejandro Tabas, André Rupp, Emili Balaguer-Ballester O5 A simple model of retinal response to multi-electrode stimulation Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer O7 Input-location dependent gain modulation in cerebellar nucleus neurons Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Ni
Ion-release processes from droplets that contain excess charge are of central importance in determining the charge-state distributions of macromolecules in electrospray ionization methods. We develop an analytical the...
详细信息
Ion-release processes from droplets that contain excess charge are of central importance in determining the charge-state distributions of macromolecules in electrospray ionization methods. We develop an analytical theory to describe the mechanism of contiguous extrusion of a charged macromolecule from a droplet. We find that the universal parameter determining the system behavior is the ratio of solvation energy per unit length to the square of the ion charge density per unit length. Systems with the same value of the ratio will follow the same path in the course of droplet evaporation. The analytical model is compared with molecular simulations of charged polyethylene glycol macroion in aqueous droplets, and the results are in excellent agreement.
暂无评论