咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 36 篇 会议
  • 3 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 55 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 32 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 7 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 58 篇 理学
    • 32 篇 生物学
    • 29 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
  • 16 篇 管理学
    • 10 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 generative adver...
  • 8 篇 machine learning
  • 7 篇 convolution
  • 6 篇 deep learning
  • 5 篇 task analysis
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 image segmentati...
  • 4 篇 training
  • 3 篇 visualization
  • 3 篇 semantics
  • 3 篇 forecasting
  • 2 篇 knowledge based ...
  • 2 篇 reinforcement le...
  • 2 篇 magnetic resonan...
  • 2 篇 signal encoding
  • 2 篇 markov processes
  • 2 篇 graph neural net...
  • 2 篇 diagnosis
  • 2 篇 computational mo...

机构

  • 28 篇 montreal institu...
  • 9 篇 montreal institu...
  • 8 篇 montreal institu...
  • 8 篇 hec montreal
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 6 篇 cifar
  • 6 篇 montreal institu...
  • 5 篇 school of comput...
  • 5 篇 department of ch...
  • 5 篇 centro de inform...
  • 5 篇 department of ch...
  • 4 篇 centro de inform...
  • 4 篇 montreal institu...
  • 3 篇 harvard universi...
  • 3 篇 facebook ai rese...
  • 3 篇 microsoft resear...
  • 3 篇 department of co...
  • 3 篇 mila-quebec inst...

作者

  • 28 篇 bengio yoshua
  • 7 篇 pineau joelle
  • 7 篇 zanchettin clebe...
  • 7 篇 tang jian
  • 6 篇 macêdo david
  • 6 篇 david macêdo
  • 6 篇 cleber zanchetti...
  • 6 篇 cohen joseph pau...
  • 5 篇 zhang saizheng
  • 4 篇 pal chris
  • 4 篇 subramanian sand...
  • 4 篇 sankar chinnadhu...
  • 4 篇 luck margaux
  • 4 篇 sordoni alessand...
  • 4 篇 romero adriana
  • 4 篇 yoshua bengio
  • 4 篇 serban iulian v.
  • 3 篇 gulcehre caglar
  • 3 篇 ke nan rosemary
  • 3 篇 adriano l. i. ol...

语言

  • 119 篇 英文
检索条件"机构=Montreal Institute for Learning Algorithms"
119 条 记 录,以下是1-10 订阅
排序:
Sparse Modeling: Theory, algorithms, and Applications  1
收藏 引用
丛书名: Chapman & Hall/CRC Machine learning & Pattern Recognition
2014年
作者: Rish, Irina Grabarnik, Genady
Sparse models are particularly useful in scientific applications, such as biomarker discovery in genetic or neuroimaging data, where the interpretability of a predictive model is essential. Sparsity can also dramatica... 详细信息
来源: 评论
Interpreting Black-Box Semantic Segmentation Models in Remote Sensing Applications  2
Interpreting Black-Box Semantic Segmentation Models in Remot...
收藏 引用
2nd Workshop on Machine learning Methods in Visualisation for Big Data, MLVis 2019
作者: Janik, A. Sankaran, K. Ortiz, A. Montreal Institute of Learning Algorithms University of Texas - El Paso
In the interpretability literature, attention is focused on understanding black-box classifiers, but many problems ranging from medicine through agriculture and crisis response in humanitarian aid are tackled by seman... 详细信息
来源: 评论
Machine learning and Interpretation in Neuroimaging  2012
收藏 引用
丛书名: Lecture Notes in Computer Science
2012年
作者: Georg Langs Irina Rish Moritz Grosse-Wentrup Brian Murphy
Brain imaging brings together the technology, methodology, research questions and approaches of a wide range of scientific fields including physics, statistics, computer science, neuroscience, biology, and engineering...
来源: 评论
Machine comprehension by text-to-text neural question generation  2
Machine comprehension by text-to-text neural question genera...
收藏 引用
2nd Workshop on Representation learning for NLP, Rep4NLP 2017 at the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Yuan, Xingdi Wang, Tong Gulcehre, Caglar Sordoni, Alessandro Bachman, Philip Subramanian, Sandeep Zhang, Saizheng Trischler, Adam Microsoft Maluuba Canada Montreal Institute for Learning Algorithms Université de Montréal Canada
We propose a recurrent neural model that generates natural-language questions from documents, conditioned on answers. We show how to train the model using a combination of supervised and reinforcement learning. After ... 详细信息
来源: 评论
An evaluation of Fisher approximations beyond Kronecker factorization  6
An evaluation of Fisher approximations beyond Kronecker fact...
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Laurent, César George, Thomas Bouthillier, Xavier Ballas, Nicolas Vincent, Pascal Montreal Institute for Learning Algorithms Université de Montréal Canada Facebook AI Research Canada
We study two coarser approximations on top of a Kronecker factorization (K-FAC) of the Fisher Information Matrix, to scale up Natural Gradient to deep and wide Convolutional Neural Networks (CNNs). The first considers... 详细信息
来源: 评论
Improving generative adversarial networks with denoising feature matching  5
Improving generative adversarial networks with denoising fea...
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Warde-Farley, David Bengio, Yoshua Montreal Institute for Learning Algorithms Université de Montréal MontrealQC Canada CIFAR Université de Montréal MontrealQC Canada
We propose an augmented training procedure for generative adversarial networks designed to address shortcomings of the original by directing the generator towards probable configurations of abstract discriminator feat... 详细信息
来源: 评论
Improved training of wasserstein GANs  17
Improved training of wasserstein GANs
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Ishaan Gulrajani Faruk Ahmed Martin Arjovsky Vincent Dumoulin Aaron Courville Montreal Institute for Learning Algorithms and Google Brain Montreal Institute for Learning Algorithms Courant Institute of Mathematical Sciences Montreal Institute for Learning Algorithms and CIFAR Fellow
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes ca...
来源: 评论
Density estimation using real NVP  5
Density estimation using real NVP
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Dinh, Laurent Sohl-Dickstein, Jascha Bengio, Samy Montreal Institute for Learning Algorithms University of Montreal MontrealQCH3T1J4 Canada Google Brain United States
Unsupervised learning of probabilistic models is a central yet challenging problem in machine learning. Specifically, designing models with tractable learning, sampling, inference and evaluation is crucial in solving ... 详细信息
来源: 评论
Towards an automatic turing test: learning to evaluate dialogue responses  5
Towards an automatic turing test: Learning to evaluate dialo...
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Lowe, Ryan Noseworthy, Michael Serban, Iulian V. Angelard-Gontier, Nicolas Bengio, Yoshua Pineau, Joelle Reasoning and Learning Lab School of Computer Science McGill University Canada Montreal Institute for Learning Algorithms Université de Montréal Canada CIFAR
Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgem...
来源: 评论
Distribution matching losses can hallucinate features in medical image translation
arXiv
收藏 引用
arXiv 2018年
作者: Cohen, Joseph Paul Luck, Margaux Honari, Sina Montreal Institute for Learning Algorithms University of Montreal
This paper discusses how distribution matching losses, such as those used in CycleGAN, when used to synthesize medical images can lead to mis-diagnosis of medical conditions. It seems appealing to use these new image ... 详细信息
来源: 评论