咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 36 篇 会议
  • 3 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 55 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 32 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 7 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 58 篇 理学
    • 32 篇 生物学
    • 29 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
  • 16 篇 管理学
    • 10 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 generative adver...
  • 8 篇 machine learning
  • 7 篇 convolution
  • 6 篇 deep learning
  • 5 篇 task analysis
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 image segmentati...
  • 4 篇 training
  • 3 篇 visualization
  • 3 篇 semantics
  • 3 篇 forecasting
  • 2 篇 knowledge based ...
  • 2 篇 reinforcement le...
  • 2 篇 magnetic resonan...
  • 2 篇 signal encoding
  • 2 篇 markov processes
  • 2 篇 graph neural net...
  • 2 篇 diagnosis
  • 2 篇 computational mo...

机构

  • 28 篇 montreal institu...
  • 9 篇 montreal institu...
  • 8 篇 montreal institu...
  • 8 篇 hec montreal
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 6 篇 cifar
  • 6 篇 montreal institu...
  • 5 篇 school of comput...
  • 5 篇 department of ch...
  • 5 篇 centro de inform...
  • 5 篇 department of ch...
  • 4 篇 centro de inform...
  • 4 篇 montreal institu...
  • 3 篇 harvard universi...
  • 3 篇 facebook ai rese...
  • 3 篇 microsoft resear...
  • 3 篇 department of co...
  • 3 篇 mila-quebec inst...

作者

  • 28 篇 bengio yoshua
  • 7 篇 pineau joelle
  • 7 篇 zanchettin clebe...
  • 7 篇 tang jian
  • 6 篇 macêdo david
  • 6 篇 david macêdo
  • 6 篇 cleber zanchetti...
  • 6 篇 cohen joseph pau...
  • 5 篇 zhang saizheng
  • 4 篇 pal chris
  • 4 篇 subramanian sand...
  • 4 篇 sankar chinnadhu...
  • 4 篇 luck margaux
  • 4 篇 sordoni alessand...
  • 4 篇 romero adriana
  • 4 篇 yoshua bengio
  • 4 篇 serban iulian v.
  • 3 篇 gulcehre caglar
  • 3 篇 ke nan rosemary
  • 3 篇 adriano l. i. ol...

语言

  • 119 篇 英文
检索条件"机构=Montreal Institute for Learning Algorithms"
119 条 记 录,以下是31-40 订阅
排序:
Image segmentation by iterative inference from conditional score estimation
arXiv
收藏 引用
arXiv 2017年
作者: Romero, Adriana Drozdzal, Michal Erraqabi, Akram Jégou, Simon Bengio, Yoshua Montreal Institute for Learning Algorithms MontrealQC Canada Imagia Cybernetics MontrealQC Canada
Inspired by the combination of feedforward and iterative computations in the visual cortex, and taking advantage of the ability of denoising autoencoders to estimate the score of a joint distribution, we propose a nov... 详细信息
来源: 评论
Neural assistant: Joint action prediction, response generation, and latent knowledge reasoning
arXiv
收藏 引用
arXiv 2019年
作者: Neelakantan, Arvind Yavuz, Semih Narang, Sharan Prasad, Vishaal Goodrich, Ben Duckworth, Daniel Sankar, Chinnadhurai Yan, Xifeng Google Salesforce Montreal Institute for Learning Algorithms UC Santa Barbara
Task-oriented dialog presents a difficult challenge encompassing multiple problems including multi-turn language understanding and generation, knowledge retrieval and reasoning, and action prediction. Modern dialog sy... 详细信息
来源: 评论
Plug and play generative networks: Conditional iterative generation of images in latent space  30
Plug and play generative networks: Conditional iterative gen...
收藏 引用
30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
作者: Nguyen, Anh Clune, Jeff Bengio, Yoshua Dosovitskiy, Alexey Yosinski, Jason University of Wyoming United States Uber AI Labs University of Wyoming United States Montreal Institute for Learning Algorithms Canada University of Freiburg Germany Uber AI Labs Canada
Generating high-resolution, photo-realistic images has been a long-standing goal in machine learning. Recently, Nguyen et al. [37] showed one interesting way to synthesize novel images by performing gradient ascent in... 详细信息
来源: 评论
Understanding Plasticity in Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Lyle, Clare Zheng, Zeyu Nikishin, Evgenii Pires, Bernardo Avila Pascanu, Razvan Dabney, Will Google DeepMind United Kingdom Montreal Institute for Learning Algorithms Canada
Plasticity, the ability of a neural network to quickly change its predictions in response to new information, is essential for the adaptability and robustness of deep reinforcement learning systems. Deep neural networ... 详细信息
来源: 评论
Improved training of wasserstein GANs
arXiv
收藏 引用
arXiv 2017年
作者: Gulrajani, Ishaan Ahmed, Faruk Arjovsky, Martin Dumoulin, Vincent Courville, Aaron Montreal Institute for Learning Algorithms Courant Institute of Mathematical Sciences CIFAR Google Brain
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes ca... 详细信息
来源: 评论
Machine comprehension by text-to-text neural question generation
arXiv
收藏 引用
arXiv 2017年
作者: Yuan, Xingdi Wang, Tong Gulcehre, Caglar Sordoni, Alessandro Bachman, Philip Subramanian, Sandeep Zhang, Saizheng Trischler, Adam Microsoft Maluuba Montreal Institute for Learning Algorithms Université de Montréal
We propose a recurrent neural model that generates natural-language questions from documents, conditioned on answers. We show how to train the model using a combination of supervised and reinforcement learning. After ... 详细信息
来源: 评论
A Risk-Averse Framework for Non-Stationary Stochastic Multi-Armed Bandits
arXiv
收藏 引用
arXiv 2023年
作者: Alami, Reda Mahfoud, Mohammed Achab, Mastane Technology Innovation Institute Masdar City United Arab Emirates Montreal Institute for Learning Algorithms Montreal Canada
In a typical stochastic multi-armed bandit problem, the objective is often to maximize the expected sum of rewards over some time horizon T. While the choice of a strategy that accomplishes that is optimal with no add... 详细信息
来源: 评论
A deep reinforcement learning chatbot (short version)
arXiv
收藏 引用
arXiv 2018年
作者: Serban, Iulian V. Sankar, Chinnadhurai Germain, Mathieu Zhang, Saizheng Lin, Zhouhan Subramanian, Sandeep Kim, Taesup Pieper, Michael Chandar, Sarath Ke, Nan Rosemary Rajeswar, Sai de Brebisson, Alexandre Sotelo, Jose M.R. Suhubdy, Dendi Michalski, Vincent Nguyen, Alexandre Pineau, Joelle Bengio, Yoshua Montreal Institute for Learning Algorithms MontrealQC Canada School of Computer Science McGill University CIFAR
We present MILABOT: a deep reinforcement learning chatbot developed by the montreal institute for learning algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popu... 详细信息
来源: 评论
learning the joint representation of heterogeneous temporal events for clinical endpoint prediction
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Luchen Shen, Jianhao Zhang, Ming Wang, Zichang Tang, Jian School of EECS Peking University Beijing China HEC Montreal Canada Montreal Institute for Learning Algorithms
The availability of a large amount of electronic health records (EHR) provides huge opportunities to improve health care service by mining these data. One important application is clinical endpoint prediction, which a... 详细信息
来源: 评论
*** - Reproducing intuition
arXiv
收藏 引用
arXiv 2017年
作者: Cohen, Joseph Paul Lo, Henry Z. Institute for Reproducible Research Montreal Institute for Learning Algorithms Université of Montréal Institute for Reproducible Research
We present ***, a platform for post-publication discussion of research papers. On ***, the research community can read and write summaries of papers in order to increase accessible and reproducibility. Summaries conta... 详细信息
来源: 评论