咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 36 篇 会议
  • 3 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 55 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 32 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 7 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 58 篇 理学
    • 32 篇 生物学
    • 29 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
  • 16 篇 管理学
    • 10 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 generative adver...
  • 8 篇 machine learning
  • 7 篇 convolution
  • 6 篇 deep learning
  • 5 篇 task analysis
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 image segmentati...
  • 4 篇 training
  • 3 篇 visualization
  • 3 篇 semantics
  • 3 篇 forecasting
  • 2 篇 knowledge based ...
  • 2 篇 reinforcement le...
  • 2 篇 magnetic resonan...
  • 2 篇 signal encoding
  • 2 篇 markov processes
  • 2 篇 graph neural net...
  • 2 篇 diagnosis
  • 2 篇 computational mo...

机构

  • 28 篇 montreal institu...
  • 9 篇 montreal institu...
  • 8 篇 montreal institu...
  • 8 篇 hec montreal
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 6 篇 cifar
  • 6 篇 montreal institu...
  • 5 篇 school of comput...
  • 5 篇 department of ch...
  • 5 篇 centro de inform...
  • 5 篇 department of ch...
  • 4 篇 centro de inform...
  • 4 篇 montreal institu...
  • 3 篇 harvard universi...
  • 3 篇 facebook ai rese...
  • 3 篇 microsoft resear...
  • 3 篇 department of co...
  • 3 篇 mila-quebec inst...

作者

  • 28 篇 bengio yoshua
  • 7 篇 pineau joelle
  • 7 篇 zanchettin clebe...
  • 7 篇 tang jian
  • 6 篇 macêdo david
  • 6 篇 david macêdo
  • 6 篇 cleber zanchetti...
  • 6 篇 cohen joseph pau...
  • 5 篇 zhang saizheng
  • 4 篇 pal chris
  • 4 篇 subramanian sand...
  • 4 篇 sankar chinnadhu...
  • 4 篇 luck margaux
  • 4 篇 sordoni alessand...
  • 4 篇 romero adriana
  • 4 篇 yoshua bengio
  • 4 篇 serban iulian v.
  • 3 篇 gulcehre caglar
  • 3 篇 ke nan rosemary
  • 3 篇 adriano l. i. ol...

语言

  • 119 篇 英文
检索条件"机构=Montreal Institute for Learning Algorithms"
119 条 记 录,以下是51-60 订阅
排序:
Communication topologies between learning agents in deep reinforcement learning
arXiv
收藏 引用
arXiv 2019年
作者: Adjodah, Dhaval Calacci, Dan Dubey, Abhimanyu Goyal, Anirudh Krafft, Peter Moro, Esteban Pentland, Alex MIT Media Lab Montreal Institute for Learning Algorithms Universidad Carlos III de Madrid
A common technique to improve speed and robustness of learning in deep reinforcement learning (DRL) and many other machine learning algorithms is to run multiple learning agents in parallel. A neglected component in t... 详细信息
来源: 评论
MARS: MARKOV MOLECULAR SAMPLING FOR MULTI-OBJECTIVE DRUG DISCOVERY  9
MARS: MARKOV MOLECULAR SAMPLING FOR MULTI-OBJECTIVE DRUG DIS...
收藏 引用
9th International Conference on learning Representations, ICLR 2021
作者: Xie, Yutong Shi, Chence Zhou, Hao Yang, Yuwei Zhang, Weinan Yu, Yong Li, Lei ByteDance AI Lab Shanghai China University of Michigan Ann ArborMI United States Montréal Institute of Learning Algorithms Montreal Canada Department of Computer Science and Engineering Shanghai Jiao Tong University China
Searching for novel molecules with desired chemical properties is crucial in drug discovery. Existing work focuses on developing neural models to generate either molecular sequences or chemical graphs. However, it rem... 详细信息
来源: 评论
On the iterative refinement of densely connected representation levels for semantic segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Casanova, Arantxa Cucurull, Guillem Drozdzal, Michal Romero, Adriana Bengio, Yoshua Montreal Institute for Learning Algorithms Computer Vision Center Barcelona Spain Facebook AI Research
State-of-the-art semantic segmentation approaches increase the receptive field of their models by using either a downsampling path composed of poolings/strided convolutions or successive dilated convolutions. However,... 详细信息
来源: 评论
Active reinforcement learning: Observing rewards at a cost
arXiv
收藏 引用
arXiv 2020年
作者: Krueger, David Leike, Jan Evans, Owain Salvatier, John Montreal Institute for Learning Algorithms University of Montreal Canada Future of Humanity Institute University of Oxford United Kingdom AI Impacts Canada
Active reinforcement learning (ARL) is a variant on reinforcement learning where the agent does not observe the reward unless it chooses to pay a query cost c > 0. The central question of ARL is how to quantify the... 详细信息
来源: 评论
Tell, Draw, and Repeat: Generating and Modifying Images Based on Continual Linguistic Instruction
Tell, Draw, and Repeat: Generating and Modifying Images Base...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Alaaeldin El-Nouby Shikhar Sharma Hannes Schulz R Devon Hjelm Layla El Asri Samira Ebrahimi Kahou Yoshua Bengio Graham Taylor University of Guelph Vector Institute for Artificial Intelligence Microsoft Research Montreal Institute for Learning Algorithms University of Montreal Canadian Institute for Advanced Research
Conditional text-to-image generation is an active area of research, with many possible applications. Existing research has primarily focused on generating a single image from available conditioning information in one ... 详细信息
来源: 评论
EDGE-SIMILARITY-AWARE GRAPH NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2021年
作者: Mallet, Vincent Oliver, Carlos G. Hamilton, William L. Pasteur Institute Les Mines-Paristech Department of Computer Science McGill University Montreal Institute for Learning Algorithms
Graph are a ubiquitous data representation, as they represent a flexible and compact representation. For instance, the 3D structure of RNA can be efficiently represented as 2.5D graphs, graphs whose nodes are nucleoti... 详细信息
来源: 评论
A survey of mobile computing for the visually impaired
arXiv
收藏 引用
arXiv 2018年
作者: Weiss, Martin Luck, Margaux Girgis, Roger Pal, Chris Cohen, Joseph Paul Montreal Institute for Learning Algorithms Université de Montréal Polytechnique Montréal McGill University
The number of visually impaired or blind (VIB) people in the world is estimated at several hundred million[4]. Based on a series of interviews with the VIB and developers of assistive technology, this paper provides a... 详细信息
来源: 评论
Distinction Maximization Loss: Efficiently Improving Out-of-Distribution Detection and Uncertainty Estimation by Replacing the Loss and Calibrating
arXiv
收藏 引用
arXiv 2022年
作者: Macêdo, David Zanchettin, Cleber Ludermir, Teresa Centro de Informática Universidade Federal de Pernambuco Brazil Montreal Institute for Learning Algorithms University of Montreal Canada
Building robust deterministic neural networks remains a challenge. On the one hand, some approaches improve out-of-distribution detection at the cost of reducing classification accuracy in some situations. On the othe... 详细信息
来源: 评论
learning Domain Randomization Distributions for Training Robust Locomotion Policies
Learning Domain Randomization Distributions for Training Rob...
收藏 引用
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Melissa Mozian Juan Camilo Gamboa Higuera David Meger Gregory Dudek Montreal Institute of Learning Algorithms (MILA) and the Mobile Robotics Lab (MRL) at the School of Computer Science McGill University Montreal Canada
This paper considers the problem of learning behaviors in simulation without knowledge of the precise dynamical properties of the target robot platform(s). In this context, our learning goal is to mutually maximize ta... 详细信息
来源: 评论
Record and Reward Federated learning Contributions with Blockchain
Record and Reward Federated Learning Contributions with Bloc...
收藏 引用
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC
作者: Ismael Martinez Sreya Francis Abdelhakim Senhaji Hafid Department of Computer Science and Operations Research University of Montreal Montreal Canada Montreal Institute of Learning Algorithms University of Montreal Montreal Canada University of Montreal Montreal QC Canada
Although Federated learning allows for participants to contribute their local data without it being revealed, it faces issues in data security and in accurately paying participants for quality data contributions. In t... 详细信息
来源: 评论