咨询与建议

限定检索结果

文献类型

  • 80 篇 期刊文献
  • 36 篇 会议
  • 3 册 图书

馆藏范围

  • 119 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 55 篇 计算机科学与技术...
    • 52 篇 软件工程
    • 32 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 生物医学工程(可授...
    • 9 篇 光学工程
    • 7 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 控制科学与工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
  • 58 篇 理学
    • 32 篇 生物学
    • 29 篇 数学
    • 13 篇 统计学(可授理学、...
    • 11 篇 物理学
    • 8 篇 化学
    • 2 篇 大气科学
    • 2 篇 地球物理学
  • 16 篇 管理学
    • 10 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 7 篇 药学(可授医学、理...
  • 1 篇 哲学
    • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 generative adver...
  • 8 篇 machine learning
  • 7 篇 convolution
  • 6 篇 deep learning
  • 5 篇 task analysis
  • 4 篇 deep neural netw...
  • 4 篇 computer archite...
  • 4 篇 image segmentati...
  • 4 篇 training
  • 3 篇 visualization
  • 3 篇 semantics
  • 3 篇 forecasting
  • 2 篇 knowledge based ...
  • 2 篇 reinforcement le...
  • 2 篇 magnetic resonan...
  • 2 篇 signal encoding
  • 2 篇 markov processes
  • 2 篇 graph neural net...
  • 2 篇 diagnosis
  • 2 篇 computational mo...

机构

  • 28 篇 montreal institu...
  • 9 篇 montreal institu...
  • 8 篇 montreal institu...
  • 8 篇 hec montreal
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 7 篇 montreal institu...
  • 6 篇 cifar
  • 6 篇 montreal institu...
  • 5 篇 school of comput...
  • 5 篇 department of ch...
  • 5 篇 centro de inform...
  • 5 篇 department of ch...
  • 4 篇 centro de inform...
  • 4 篇 montreal institu...
  • 3 篇 harvard universi...
  • 3 篇 facebook ai rese...
  • 3 篇 microsoft resear...
  • 3 篇 department of co...
  • 3 篇 mila-quebec inst...

作者

  • 28 篇 bengio yoshua
  • 7 篇 pineau joelle
  • 7 篇 zanchettin clebe...
  • 7 篇 tang jian
  • 6 篇 macêdo david
  • 6 篇 david macêdo
  • 6 篇 cleber zanchetti...
  • 6 篇 cohen joseph pau...
  • 5 篇 zhang saizheng
  • 4 篇 pal chris
  • 4 篇 subramanian sand...
  • 4 篇 sankar chinnadhu...
  • 4 篇 luck margaux
  • 4 篇 sordoni alessand...
  • 4 篇 romero adriana
  • 4 篇 yoshua bengio
  • 4 篇 serban iulian v.
  • 3 篇 gulcehre caglar
  • 3 篇 ke nan rosemary
  • 3 篇 adriano l. i. ol...

语言

  • 119 篇 英文
检索条件"机构=Montreal Institute for Learning Algorithms"
119 条 记 录,以下是61-70 订阅
排序:
On random weights for texture generation in one layer CNNS
On random weights for texture generation in one layer CNNS
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Mihir Mongia Kundan Kumar Akram Erraqabi Yoshua Bengio Stanford University United States of America IIT Kanpur India Montreal Institute for Learning Algorithms Canada
Recent work in the literature has shown experimentally that one can use the lower layers of a trained convolutional neural network (CNN) to model natural textures. More interestingly, it has also been experimentally s... 详细信息
来源: 评论
Overview of the TREC 2020 fair ranking track
arXiv
收藏 引用
arXiv 2021年
作者: Biega, Asia J. Ekstrand, Michael D. Kohlmeier, Sebastian Diaz, Fernando Feldman, Sergey Microsoft Research Montréal Boise State University Allen Institute for Artificial Intelligence Montreal Institute for Learning Algorithms
For 2020, we again adopted an academic search task, where we have a corpus of academic article abstracts and queries submitted to a production academic search engine. The central goal of the Fair Ranking track is to p... 详细信息
来源: 评论
An Attention-based Collaboration framework for multi-view network representation learning
arXiv
收藏 引用
arXiv 2017年
作者: Qu, Meng Tang, Jian Shang, Jingbo Ren, Xiang Zhang, Ming Han, Jiawei University of Illinois at Urbana-Champaign IL United States Hec Montreal Montreal Institute of Learning Algorithms Peking University Beijing China
learning distributed node representations in networks has been attracting increasing attention recently due to its effectiveness in a variety of applications. Existing approaches usually study networks with a single t... 详细信息
来源: 评论
Pixelvae: A latent variable model for natural images  5
Pixelvae: A latent variable model for natural images
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Gulrajani, Ishaan Kumar, Kundan Ahmed, Faruk Taiga, Adrien Ali Visin, Francesco Vazquez, David Courville, Aaron Montreal Institute for Learning Algorithms Université de Montréal Canada Department of Computer Science and Engineering IIT Kanpur India CentraleSupélec France Computer Vision Center Universitat Autonoma de Barcelona Spain Politecnico di Milano Italy CIFAR
Natural image modeling is a landmark challenge of unsupervised learning. Variational Autoencoders (VAEs) learn a useful latent representation and model global structure well but have difficulty capturing small details...
来源: 评论
Towards an automatic turing test: learning to evaluate dialogue responses
arXiv
收藏 引用
arXiv 2017年
作者: Lowe, Ryan Noseworthy, Michael Serban, Iulian V. Gontier, Nicolas A. Bengio, Yoshua Pineau, Joelle Reasoning and Learning Lab School of Computer Science McGill University Montreal Institute for Learning Algorithms Université de Montréal Cifar Senior Fellow
Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgem... 详细信息
来源: 评论
Visualizing the consequences of climate change using cycle-consistent adversarial networks
arXiv
收藏 引用
arXiv 2019年
作者: Schmidt, Victor Luccioni, Alexandra Karthik Mukkavilli, S. Sankaran, Kris Bengio, Yoshua Chayes, Jennifer Balasooriya, Narmada Montreal Institute for Learning Algorithms Montreal Canada Microsoft Research New England CambridgeMA United States ConscientAI Labs Colombo Sri Lanka
We present a project that aims to generate images that depict accurate, vivid, and personalized outcomes of climate change using Cycle-Consistent Adversarial Networks (CycleGANs). By training our CycleGAN model on str... 详细信息
来源: 评论
DeepInf: Social Influence Prediction with Deep learning
arXiv
收藏 引用
arXiv 2018年
作者: Qiu, Jiezhong Tang, Jian Ma, Hao Dong, Yuxiao Wang, Kuansan Tang, Jie Department of Computer Science and Technology Tsinghua University Microsoft Research Redmond United States HEC Montreal Canada Montreal Institute for Learning Algorithms Canada
Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends’ behaviors and are in turn influ... 详细信息
来源: 评论
Unsupervised adversarial domain adaptation for acoustic scene classification
arXiv
收藏 引用
arXiv 2018年
作者: Gharib, Shayan Drossos, Konstantinos Çakir, Emre Serdyuk, Dmitriy Virtanen, Tuomas Audio Research Group Lab. of Signal Processing Tampere University of Technology Tampere Finland Montreal Institute for Learning Algorithms MontrealQC Canada
A general problem in acoustic scene classification task is the mismatched conditions between training and testing data, which significantly reduces the performance of the developed methods on classification accuracy. ... 详细信息
来源: 评论
Dendritic error backpropagation in deep cortical microcircuits
arXiv
收藏 引用
arXiv 2017年
作者: Sacramento, João Costa, Rui Ponte Bengio, Yoshua Senn, Walter Department of Physiology University of Bern Switzerland Montreal Institute for Learning Algorithms Université de Montréal Quebec Canada
Animal behaviour depends on learning to associate sensory stimuli with the desired motor command. Understanding how the brain orchestrates the necessary synaptic modifications across different brain areas has remained... 详细信息
来源: 评论
learning normalized inputs for iterative estimation in medical image segmentation
arXiv
收藏 引用
arXiv 2017年
作者: Drozdzal, Michal Chartrand, Gabriel Vorontsov, Eugene Jorio, Lisa Di Tang, An Romero, Adriana Bengio, Yoshua Pal, Chris Kadoury, Samuel Ecole Polytechnique de Montréal Montréal Montreal Institute for Learning Algorithms and Imagia Inc. Montréal Université de Montréal Montréal and Imagia Inc. Montréal Imagia Inc. Montréal CHUM Research Center Montréal Ecole Polytechnique de Montréal Montréal Montreal Institute for Learning Algorithms Montreal Institute for Learning Algorithms Ecole Polytechnique de Montréal Montréal
In this paper, we introduce a simple, yet powerful pipeline for medical image segmentation that combines Fully Convolutional Networks (FCNs) with Fully Convolutional Residual Networks (FC-ResNets). We propose and exam... 详细信息
来源: 评论