咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 8 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 信息与通信工程
  • 5 篇 理学
    • 3 篇 生物学
    • 2 篇 数学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 3 篇 deep learning
  • 3 篇 generative adver...
  • 2 篇 semantics
  • 2 篇 recurrent neural...
  • 1 篇 computer archite...
  • 1 篇 image segmentati...
  • 1 篇 signal encoding
  • 1 篇 crime
  • 1 篇 machine learning
  • 1 篇 population dynam...
  • 1 篇 image resolution
  • 1 篇 context modeling
  • 1 篇 quality control

机构

  • 6 篇 cifar
  • 4 篇 hec montreal
  • 4 篇 montreal institu...
  • 3 篇 harvard universi...
  • 3 篇 school of comput...
  • 3 篇 mila-quebec inst...
  • 3 篇 montreal institu...
  • 2 篇 national taiwan ...
  • 2 篇 montreal institu...
  • 2 篇 cifar ai researc...
  • 2 篇 canada cifar ai ...
  • 2 篇 aalto university
  • 2 篇 element ai
  • 2 篇 reasoning and le...
  • 2 篇 courant institut...
  • 1 篇 senior cifar mem...
  • 1 篇 dipartimento di ...
  • 1 篇 microsoft resear...
  • 1 篇 facebook ai rese...
  • 1 篇 montréal institu...

作者

  • 7 篇 bengio yoshua
  • 5 篇 pineau joelle
  • 4 篇 serban iulian v.
  • 3 篇 ke nan rosemary
  • 3 篇 ahmed faruk
  • 3 篇 aaron courville
  • 3 篇 courville aaron
  • 3 篇 tang jian
  • 3 篇 gulrajani ishaan
  • 3 篇 sun fan-yun
  • 3 篇 hoffmann jordan
  • 3 篇 lin zhouhan
  • 2 篇 subramanian sand...
  • 2 篇 kim taesup
  • 2 篇 sankar chinnadhu...
  • 2 篇 suhubdy dendi
  • 2 篇 germain mathieu
  • 2 篇 zhang saizheng
  • 2 篇 verma vikas
  • 2 篇 de brebisson ale...

语言

  • 18 篇 英文
检索条件"机构=Montreal Institute for Learning Algorithms and CIFAR Fellow"
18 条 记 录,以下是1-10 订阅
排序:
Improved training of wasserstein GANs  31
Improved training of wasserstein GANs
收藏 引用
31st Annual Conference on Neural Information Processing Systems, NIPS 2017
作者: Gulrajani, Ishaan Ahmed, Faruk Arjovsky, Martin Dumoulin, Vincent Courville, Aaron Montreal Institute for Learning Algorithms Canada Courant Institute of Mathematical Sciences United States CIFAR Fellow United States Google Brain United States
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes ca... 详细信息
来源: 评论
Improved training of wasserstein GANs  17
Improved training of wasserstein GANs
收藏 引用
Proceedings of the 31st International Conference on Neural Information Processing Systems
作者: Ishaan Gulrajani Faruk Ahmed Martin Arjovsky Vincent Dumoulin Aaron Courville Montreal Institute for Learning Algorithms and Google Brain Montreal Institute for Learning Algorithms Courant Institute of Mathematical Sciences Montreal Institute for Learning Algorithms and CIFAR Fellow
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes ca...
来源: 评论
Improving generative adversarial networks with denoising feature matching  5
Improving generative adversarial networks with denoising fea...
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Warde-Farley, David Bengio, Yoshua Montreal Institute for Learning Algorithms Université de Montréal MontrealQC Canada CIFAR Université de Montréal MontrealQC Canada
We propose an augmented training procedure for generative adversarial networks designed to address shortcomings of the original by directing the generator towards probable configurations of abstract discriminator feat... 详细信息
来源: 评论
Towards an automatic turing test: learning to evaluate dialogue responses  5
Towards an automatic turing test: Learning to evaluate dialo...
收藏 引用
5th International Conference on learning Representations, ICLR 2017
作者: Lowe, Ryan Noseworthy, Michael Serban, Iulian V. Angelard-Gontier, Nicolas Bengio, Yoshua Pineau, Joelle Reasoning and Learning Lab School of Computer Science McGill University Canada Montreal Institute for Learning Algorithms Université de Montréal Canada CIFAR
Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgem...
来源: 评论
Improved training of wasserstein GANs
arXiv
收藏 引用
arXiv 2017年
作者: Gulrajani, Ishaan Ahmed, Faruk Arjovsky, Martin Dumoulin, Vincent Courville, Aaron Montreal Institute for Learning Algorithms Courant Institute of Mathematical Sciences CIFAR Google Brain
Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes ca... 详细信息
来源: 评论
Towards an automatic turing test: learning to evaluate dialogue responses
arXiv
收藏 引用
arXiv 2017年
作者: Lowe, Ryan Noseworthy, Michael Serban, Iulian V. Gontier, Nicolas A. Bengio, Yoshua Pineau, Joelle Reasoning and Learning Lab School of Computer Science McGill University Montreal Institute for Learning Algorithms Université de Montréal Cifar Senior Fellow
Automatically evaluating the quality of dialogue responses for unstructured domains is a challenging problem. Unfortunately, existing automatic evaluation metrics are biased and correlate very poorly with human judgem... 详细信息
来源: 评论
A deep reinforcement learning chatbot
arXiv
收藏 引用
arXiv 2017年
作者: Serban, Iulian V. Sankar, Chinnadhurai Germain, Mathieu Zhang, Saizheng Lin, Zhouhan Subramanian, Sandeep Kim, Taesup Pieper, Michael Chandar, Sarath Ke, Nan Rosemary Rajeshwar, Sai de Brebisson, Alexandre Sotelo, Jose M.R. Suhubdy, Dendi Michalski, Vincent Nguyen, Alexandre Pineau, Joelle Bengio, Yoshua Montreal Institute for Learning Algorithms MontrealQC Canada School of Computer Science McGill University CIFAR
We present MILABOT: a deep reinforcement learning chatbot developed by the montreal institute for learning algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popu... 详细信息
来源: 评论
INFOGRAPH: UNSUPERVISED AND SEMI-SUPERVISED GRAPH-LEVEL REPRESENTATION learning VIA MUTUAL INFORMATION MAXIMIZATION
INFOGRAPH: UNSUPERVISED AND SEMI-SUPERVISED GRAPH-LEVEL REPR...
收藏 引用
8th International Conference on learning Representations, ICLR 2020
作者: Sun, Fan-Yun Hoffmann, Jordan Verma, Vikas Tang, Jian National Taiwan University Taiwan Mila-Quebec Institute for Learning Algorithms Canada Aalto University Finland Harvard University United States HEC Montreal Canada CIFAR AI Research
This paper studies learning the representations of whole graphs in both unsupervised and semi-supervised scenarios. Graph-level representations are critical in a variety of real-world applications such as predicting t... 详细信息
来源: 评论
A deep reinforcement learning chatbot (short version)
arXiv
收藏 引用
arXiv 2018年
作者: Serban, Iulian V. Sankar, Chinnadhurai Germain, Mathieu Zhang, Saizheng Lin, Zhouhan Subramanian, Sandeep Kim, Taesup Pieper, Michael Chandar, Sarath Ke, Nan Rosemary Rajeswar, Sai de Brebisson, Alexandre Sotelo, Jose M.R. Suhubdy, Dendi Michalski, Vincent Nguyen, Alexandre Pineau, Joelle Bengio, Yoshua Montreal Institute for Learning Algorithms MontrealQC Canada School of Computer Science McGill University CIFAR
We present MILABOT: a deep reinforcement learning chatbot developed by the montreal institute for learning algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popu... 详细信息
来源: 评论
On the impressive performance of randomly weighted encoders in summarization tasks
arXiv
收藏 引用
arXiv 2020年
作者: Pilault, Jonathan Park, Jaehong Pal, Christopher Element AI Montreal Institute for Learning Algorithms Ecole Polytechnique de Montreal Canada CIFAR AI Chair
In this work, we investigate the performance of untrained randomly initialized encoders in a general class of sequence to sequence models and compare their performance with that of fully-trained encoders on the task o... 详细信息
来源: 评论