咨询与建议

限定检索结果

文献类型

  • 50 篇 会议
  • 39 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 91 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 36 篇 计算机科学与技术...
    • 31 篇 软件工程
    • 18 篇 信息与通信工程
    • 8 篇 机械工程
    • 7 篇 生物工程
    • 6 篇 控制科学与工程
    • 5 篇 光学工程
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 化学工程与技术
    • 2 篇 轻工技术与工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 29 篇 理学
    • 20 篇 数学
    • 8 篇 统计学(可授理学、...
    • 7 篇 生物学
    • 4 篇 物理学
    • 3 篇 化学
    • 2 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 医学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 8 篇 training
  • 6 篇 pattern recognit...
  • 5 篇 signal processin...
  • 5 篇 algorithm design...
  • 4 篇 image processing
  • 4 篇 feature extracti...
  • 4 篇 data models
  • 3 篇 alzheimer's dise...
  • 3 篇 face recognition
  • 3 篇 databases
  • 3 篇 semantics
  • 3 篇 face
  • 3 篇 noise robustness
  • 3 篇 clustering algor...
  • 3 篇 estimation
  • 3 篇 testing
  • 3 篇 watermarking
  • 2 篇 motion estimatio...
  • 2 篇 support vector m...
  • 2 篇 biomarkers

机构

  • 10 篇 centre for visio...
  • 9 篇 national key lab...
  • 9 篇 pattern recognit...
  • 7 篇 jiangsu provinci...
  • 5 篇 school of artifi...
  • 5 篇 gaoling school o...
  • 4 篇 center for data ...
  • 3 篇 jiangsu provinci...
  • 3 篇 department of ne...
  • 2 篇 the center for v...
  • 2 篇 pattern recognit...
  • 2 篇 shandong provinc...
  • 2 篇 jiangsu provinci...
  • 2 篇 pattern recognit...
  • 2 篇 machine vision a...
  • 2 篇 deepseek ai
  • 2 篇 shanghai key lab...
  • 2 篇 signal processin...
  • 2 篇 centre for visio...
  • 2 篇 school of intern...

作者

  • 15 篇 kittler josef
  • 14 篇 wu xiao-jun
  • 11 篇 robi polikar
  • 8 篇 bilge gunsel
  • 7 篇 zhou jie
  • 7 篇 sun xu
  • 7 篇 b. gunsel
  • 5 篇 meng fandong
  • 5 篇 ma zhanyu
  • 5 篇 zhou hao
  • 4 篇 chen deli
  • 4 篇 josef kittler
  • 4 篇 yang wenkai
  • 4 篇 feng zhen-hua
  • 4 篇 gunsel bilge
  • 4 篇 lin yankai
  • 4 篇 xu tianyang
  • 4 篇 li hui
  • 4 篇 song yi-zhe
  • 3 篇 he fan

语言

  • 86 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Multimedia Signal Processing and Pattern Recognition Laboratory"
91 条 记 录,以下是1-10 订阅
排序:
TOWARDS CODABLE WATERMARKING FOR INJECTING MULTI-BITS INFORMATION TO LLMS  12
TOWARDS CODABLE WATERMARKING FOR INJECTING MULTI-BITS INFORM...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Wang, Lean Yang, Wenkai Chen, Deli Zhou, Hao Lin, Yankai Meng, Fandong Zhou, Jie Sun, Xu National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China China Pattern Recognition Center WeChat AI Tencent Inc. China DeepSeek AI China
As large language models (LLMs) generate texts with increasing fluency and realism, there is a growing need to identify the source of texts to prevent the abuse of LLMs. Text watermarking techniques have proven reliab... 详细信息
来源: 评论
Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents  38
Watch Out for Your Agents! Investigating Backdoor Threats to...
收藏 引用
38th Conference on Neural Information processing Systems, NeurIPS 2024
作者: Yang, Wenkai Bi, Xiaohan Lin, Yankai Chen, Sishuo Zhou, Jie Sun, Xu Gaoling School of Artificial Intelligence Renmin University of China Beijing China Center for Data Science Peking University China Pattern Recognition Center WeChat AI Tencent Inc. China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China
Driven by the rapid development of Large Language Models (LLMs), LLM-based agents have been developed to handle various real-world applications, including finance, healthcare, and shopping, etc. It is crucial to ensur...
来源: 评论
A Unified Framework for Multi-Intent Spoken Language Understanding with Prompting
A Unified Framework for Multi-Intent Spoken Language Underst...
收藏 引用
International Conference on Acoustics, Speech, and signal processing (ICASSP)
作者: Feifan Song Lianzhe Huang Houfeng Wang School of Computer Science Peking University National Key Laboratory of Multimedia Information Processing Peking University Pattern Recognition Center WeChat AI Tencent
ChatGPT has demonstrated impressive capabilities in building conversations. However, for Spoken Language Understanding (SLU) with multiple intents, traditional approaches where Intent Detection and Slot Filling are jo...
来源: 评论
Fed-FA: theoretically modeling client data divergence for federated language backdoor defense  23
Fed-FA: theoretically modeling client data divergence for fe...
收藏 引用
Proceedings of the 37th International Conference on Neural Information processing Systems
作者: Zhiyuan Zhang Deli Chen Hao Zhou Fandong Meng Jie Zhou Xu Sun National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University and Pattern Recognition Center WeChat AI Tencent Inc. China Pattern Recognition Center WeChat AI Tencent Inc. China National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University
Federated learning algorithms enable neural network models to be trained across multiple decentralized edge devices without sharing private data. However, they are susceptible to backdoor attacks launched by malicious...
来源: 评论
Diffusion Theory as a Scalpel: Detecting and Purifying Poisonous Dimensions in Pre-trained Language Models Caused by Backdoor or Bias
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Zhiyuan Chen, Deli Zhou, Hao Meng, Fandong Zhou, Jie Sun, Xu National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Pattern Recognition Center WeChat AI Tencent Inc. China
Pre-trained Language Models (PLMs) may be poisonous with backdoors or bias injected by the suspicious attacker during the fine-tuning process. A core challenge of purifying potentially poisonous PLMs is precisely find... 详细信息
来源: 评论
Label Words are Anchors: An Information Flow Perspective for Understanding In-Context Learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Lean Li, Lei Dai, Damai Chen, Deli Zhou, Hao Meng, Fandong Zhou, Jie Sun, Xu National Key Laboratory for Multimedia Information Processing School of Computer Science Peking University China Pattern Recognition Center WeChat AI Tencent Inc. China
In-context learning (ICL) emerges as a promising capability of large language models (LLMs) by providing them with demonstration examples to perform diverse tasks. However, the underlying mechanism of how LLMs learn f... 详细信息
来源: 评论
Decentralized Kernel Ridge Regression Based on Data-Dependent Random Feature
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Ruikai He, Fan He, Mingzhen Yang, Jie Huang, Xiaolin The Institute of Image Processing and Pattern Recognition The MOE Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai200240 China The STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven LeuvenB-3001 Belgium
Random feature (RF) has been widely used for node consistency in decentralized kernel ridge regression (KRR). Currently, the consistency is guaranteed by imposing constraints on coefficients of features, necessitating... 详细信息
来源: 评论
STRNet:Triple-stream Spatiotemporal Relation Network for Action recognition
收藏 引用
International Journal of Automation and computing 2021年 第5期18卷 718-730页
作者: Zhi-Wei Xu Xiao-Jun Wu Josef Kittler School of Artificial Intelligence and Computer Science Jiangnan UniversityWuxi 214122China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Wuxi 214122China Centre for Vision Speech and Signal ProcessingUniversity of SurreyGuildfordGU27XHUK
Learning comprehensive spatiotemporal features is crucial for human action recognition. Existing methods tend to model the spatiotemporal feature blocks in an integrate-separate-integrate form, such as appearance-and-... 详细信息
来源: 评论
Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning
arXiv
收藏 引用
arXiv 2024年
作者: He, Fan He, Mingzhen Shi, Lei Huang, Xiaolin Suykens, Johan A.K. STADIUS Center for Dynamical Systems Signal Processing and Data Analytics KU Leuven Leuven Belgium MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Shanghai Key Laboratory for Contemporary Applied Mathematics School of Mathematical Sciences Fudan University Shanghai200433 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China MOE Key Laboratory of System Control and Information Processing Institute of Image Processing and Pattern Recognition Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China
Ridgeless regression has garnered attention among researchers, particularly in light of the "Benign Overfitting" phenomenon, where models interpolating noisy samples demonstrate robust generalization. Howeve... 详细信息
来源: 评论
A Riemannian Residual Learning Mechanism for SPD Network
A Riemannian Residual Learning Mechanism for SPD Network
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhenyu Cai Rui Wang Tianyang Xu Xiaojun Wu Josef Kittler School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Wuxi China Centre for Vision Speech and Signal Processing University of Surrey Guildford U.K.
The generalization of Euclidean network paradigm to the Riemannian manifolds has attracted much attention for offering useful geometric representations in processing manifold-valued data in recent years. However, the ... 详细信息
来源: 评论