咨询与建议

限定检索结果

文献类型

  • 50 篇 会议
  • 38 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 90 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 51 篇 工学
    • 35 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 18 篇 信息与通信工程
    • 8 篇 机械工程
    • 7 篇 生物工程
    • 6 篇 控制科学与工程
    • 5 篇 光学工程
    • 4 篇 仪器科学与技术
    • 4 篇 电气工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 化学工程与技术
    • 2 篇 轻工技术与工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 29 篇 理学
    • 20 篇 数学
    • 8 篇 统计学(可授理学、...
    • 7 篇 生物学
    • 4 篇 物理学
    • 3 篇 化学
    • 2 篇 系统科学
  • 14 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 7 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 医学
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 8 篇 training
  • 6 篇 pattern recognit...
  • 5 篇 signal processin...
  • 5 篇 algorithm design...
  • 4 篇 feature extracti...
  • 4 篇 data models
  • 3 篇 alzheimer's dise...
  • 3 篇 face recognition
  • 3 篇 databases
  • 3 篇 semantics
  • 3 篇 face
  • 3 篇 image processing
  • 3 篇 noise robustness
  • 3 篇 clustering algor...
  • 3 篇 estimation
  • 3 篇 testing
  • 3 篇 watermarking
  • 2 篇 motion estimatio...
  • 2 篇 support vector m...
  • 2 篇 biomarkers

机构

  • 10 篇 centre for visio...
  • 9 篇 national key lab...
  • 9 篇 pattern recognit...
  • 7 篇 jiangsu provinci...
  • 5 篇 school of artifi...
  • 5 篇 gaoling school o...
  • 4 篇 center for data ...
  • 3 篇 jiangsu provinci...
  • 3 篇 department of ne...
  • 2 篇 the center for v...
  • 2 篇 pattern recognit...
  • 2 篇 shandong provinc...
  • 2 篇 jiangsu provinci...
  • 2 篇 pattern recognit...
  • 2 篇 machine vision a...
  • 2 篇 deepseek ai
  • 2 篇 shanghai key lab...
  • 2 篇 signal processin...
  • 2 篇 centre for visio...
  • 2 篇 school of intern...

作者

  • 15 篇 kittler josef
  • 14 篇 wu xiao-jun
  • 11 篇 robi polikar
  • 8 篇 bilge gunsel
  • 7 篇 zhou jie
  • 7 篇 sun xu
  • 7 篇 b. gunsel
  • 5 篇 meng fandong
  • 5 篇 ma zhanyu
  • 5 篇 zhou hao
  • 4 篇 chen deli
  • 4 篇 josef kittler
  • 4 篇 yang wenkai
  • 4 篇 feng zhen-hua
  • 4 篇 gunsel bilge
  • 4 篇 lin yankai
  • 4 篇 xu tianyang
  • 4 篇 li hui
  • 4 篇 song yi-zhe
  • 3 篇 he fan

语言

  • 80 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"机构=Multimedia Signal Processing and Pattern Recognition Laboratory"
90 条 记 录,以下是41-50 订阅
排序:
Cross-modal subspace learning for fine-grained sketch-based image retrieval
arXiv
收藏 引用
arXiv 2017年
作者: Xu, Peng Yin, Qiyue Huang, Yongye Song, Yi-Zhe Ma, Zhanyu Wang, Liang Xiang, Tao Bastiaan Kleijn, W. Guo, Jun Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China SketchX Lab School of Electronic Engineering and Computer Science Queen Mary University of London London United Kingdom Communications and Signal Processing Group Victoria University of Wellington New Zealand
Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highl... 详细信息
来源: 评论
Image-based characterization of the pulp flows
收藏 引用
pattern recognition and Image Analysis 2016年 第3期26卷 630-637页
作者: Sorokin, M. Strokina, N. Eerola, T. Lensu, L. Karttunen, K. Kalviainen, H. Machine Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta University of Technology PO Box 20 LappeenrantaFI-53851 Finland Computer Vision Group Department of Signal Processing Tampere University of Technology PO Box 527 TampereFI-33101 Finland Cemis-Oulu Unit of Measurement Technology Kajaani University Consortium University of Oulu PO Box 127 KajaaniFI-87400 Finland School of Information Technology Monash University Malaysia Jalan Lagoon Selatan Bandar Sunway Selangor Darul Ehsan46150 Malaysia
Material flow characterization is important in the process industries and its further automation. In this study, close-to-laminar pulp suspension flows are analyzed based on double-exposure images captured in laborato... 详细信息
来源: 评论
Head rotation classification using dense motion estimation and particle filter tracking
Head rotation classification using dense motion estimation a...
收藏 引用
International Conference on Electrical and Electronics Engineering, ELECO
作者: Filiz Gürkan Bilge Günsel Deniz Kumlu Multimedia Signal Processing and Pattern Recognition Group Istanbul Technical University Turkey
We propose a method that performs dense motion classification integrated with particle filter tracking for monitoring whether the viewer is involved in the screened content or not. We first perform the color based par... 详细信息
来源: 评论
Comparison of appearance-based and geometry-based bubble detectors
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8671卷 610-617页
作者: Strokina, Nataliya Juránek, Roman Eerola, Tuomas Lensu, Lasse Zemčik, Pavel Kälviäinen, Heikki Tampere University of Technology Department of Signal Processing P.O. Box 527 Tampere33101 Finland Brno University of Technology Department of Computer Graphics and Multimedia Brno Czech Republic Lappeenranta University of Technology Machine Vision and Pattern Recognition Laboratory P.O. Box 20 Lappeenranta53851 Finland
Bubble detection is a complicated tasks since varying lighting conditions changes considerably the appearance of bubbles in liquid. The two common techniques to detect circular objects such as bubbles, the geometry-ba... 详细信息
来源: 评论
When Face recognition Meets with Deep Learning: An Evaluation of Convolutional Neural Networks for Face recognition
When Face Recognition Meets with Deep Learning: An Evaluatio...
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Guosheng Hu Yongxin Yang Dong Yi Josef Kittler William Christmas Stan Z. Li Timothy Hospedales Centre for Vision Speech and Signal Processing University of Surrey UK Indicates equal contribution LEAR team Inria Grenoble Rhone-Alpes Montbonnot France Electronic Engineering and Computer Science Queen Mary University of London UK Chinese Academy of Sciences Center for Biometrics and Security Research & National Laboratory of Pattern Recognition China
Deep learning, in particular Convolutional Neural Network (CNN), has achieved promising results in face recognition recently. However, it remains an open question: why CNNs work well and how to design a 'good'... 详细信息
来源: 评论
Density-Aware Part-Based Object Detection with Positive Examples
Density-Aware Part-Based Object Detection with Positive Exam...
收藏 引用
International Conference on pattern recognition
作者: Ekaterina Riabchenko Joni-Kristian Kämäräinen Ke Chen Machine Vision and Pattern Recognition Laboratory Lappeenranta University of Technology Deparment of Signal Processing Tampere University of Technology
Part-based models have become the mainstream approach for visual object classification and detection. The key tools adopted by the most methods are interest point detectors and descriptors, shared codes for object par... 详细信息
来源: 评论
Learning Generative Models of Object Parts from a Few Positive Examples
Learning Generative Models of Object Parts from a Few Positi...
收藏 引用
International Conference on pattern recognition
作者: Ekaterina Riabchenko Joni-Kristian Kämäräinen Ke Chen Machine Vision and Pattern Recognition Laboratory Lappeenranta University of Technology Department of Signal Processing Tampere University of Technology
A number of computer vision problems such as object detection, pose estimation, and face recognition utilise local parts to represent objects, which include the distinguished information of objects. In this work, we i... 详细信息
来源: 评论
SAR IMAGE CLASSIFICATION WITH NORMALIZED GAMMA PROCESS MIXTURES
SAR IMAGE CLASSIFICATION WITH NORMALIZED GAMMA PROCESS MIXTU...
收藏 引用
IEEE International Conference on Image processing
作者: Koray Kayabol Bilge Gunsel Multimedia Signal Processing and Pattern Recognition Lab. Istanbul Technical University
We propose a novel image prior for the non-parametric Bayesian mixture model based unsupervised classification of SAR images. We modified the Normalized Gamma Process prior that constitutes a more general form of the ... 详细信息
来源: 评论
AN ADAPTIVE TIME-FREQUENCY RESOLUTION FRAMEWORK FOR SINGLE CHANNEL SOURCE SEPARATION BASED ON NON-NEGATIVE TENSOR FACTORIZATION
AN ADAPTIVE TIME-FREQUENCY RESOLUTION FRAMEWORK FOR SINGLE C...
收藏 引用
IEEE International Conference on Acoustics, Speech, and signal processing
作者: S. Kirbiz B. Gunsel Multimedia Signal Processing and Pattern Recognition Group. Dept. of Electronics and Comm. Eng. Istanbul Technical University Turkey
In this paper, we propose an adaptive time-frequency resolution based single channel sound source separation method using Non-negative Tensor Factorization (NTF). The model aims to alleviate drawbacks of working by fi... 详细信息
来源: 评论
SLEEPINESS DETECTION FROM SPEECH BY PERCEPTUAL FEATURES
SLEEPINESS DETECTION FROM SPEECH BY PERCEPTUAL FEATURES
收藏 引用
IEEE International Conference on Acoustics, Speech and signal processing
作者: Bilge Gunsel Cenk Sezgin Jarek Krajewski Multimedia Signal Processing and Pattern Recognition Group Istanbul Technical Univ. Turkey Experimental Industrial Psychology Univ. of Wuppertal Germany
We propose a two-class classification scheme with a small number of features for sleepiness detection. Unlike the conventional methods that rely on the linguistics content of speech, we work with prosodic features ext... 详细信息
来源: 评论