Boiling is a very complex and illusive process with very high efficiency of heat *** many sub-processes in boiling phenomenon,gravity can be involved and play much important *** reveal its influence,long-term,steady m...
详细信息
Boiling is a very complex and illusive process with very high efficiency of heat *** many sub-processes in boiling phenomenon,gravity can be involved and play much important *** reveal its influence,long-term,steady microgravity are ***,the opportunity is much ***,ground-based short-term microgravity experiment becomes an attractive alternative. Experiments of transient pool boiling of highly subcooled FC-72 on a smooth silicon chip with the dimensions of 10×10x0.5 mm3 were studied in short-term microgravity condition utilizing the drop tower *** heating currents were switched on near the release of the drop *** bubble behaviors and heat transfer of air-dissolved FC-72 on the silicon chip were obtained at the bulk
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard two-dimensional nine-velocity (D2Q9) lattice is developed in the framework of the double-distribution-function (DDF) ...
详细信息
In this paper, a coupling lattice Boltzmann (LB) model for simulating thermal flows on the standard two-dimensional nine-velocity (D2Q9) lattice is developed in the framework of the double-distribution-function (DDF) approach in which the viscous heat dissipation and compression work are considered. In the model, a density distribution function is used to simulate the flow field, while a total energy distribution function is employed to simulate the temperature field. The discrete equilibrium density and total energy distribution functions are obtained from the Hermite expansions of the corresponding continuous equilibrium distribution functions. The pressure given by the equation of state of perfect gases is recovered in the macroscopic momentum and energy equations. The coupling between the momentum and energy transports makes the model applicable for general thermal flows such as non-Boussinesq flows, while the existing DDF LB models on standard lattices are usually limited to Boussinesq flows in which the temperature variation is small. Meanwhile, the simple structure and general features of the DDF LB approach are retained. The model is tested by numerical simulations of thermal Couette flow, attenuation-driven acoustic streaming, and natural convection in a square cavity with small and large temperature differences. The numerical results are found to be in good agreement with the analytical solutions and/or other numerical results reported in the literature.
The existing lattice Boltzmann models for incompressible multiphaseflows are mostly constructed with two distribution functions: one is the order parameter distribution function, which is used to track the interface ...
详细信息
The existing lattice Boltzmann models for incompressible multiphaseflows are mostly constructed with two distribution functions: one is the order parameter distribution function, which is used to track the interface between different phases, and the other is the pressure distribution function for solving the velocity field. In this paper, it is shown that in these models the recovered momentum equation is inconsistent with the target one: an additional force is included in the recovered momentum equation. The additional force has the following features. First, it is proportional to the macroscopic velocity. Second, it is zero in every single-phase region but is nonzero in the interface. Therefore it can be interpreted as an interfacial force. To investigate the effects of the additional interfacial force, numerical simulations are carried out for the problem of Rayleigh-Taylor instability, droplet splashing on a thin liquid film, and the evolution of a falling droplet under gravity. Numerical results demonstrate that, with the increase of the velocity or the Reynolds number, the additional interfacial force will gradually have an important influence on the interface and affect the numerical accuracy.
The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study repons that the brake-specific fuel consumption of diesel...
详细信息
The combustion and emission characteristics of a turbo-charged, common rail diesel engine fuelled with diesel-biodiesel-DEE blends were investigated. The study repons that the brake-specific fuel consumption of dieselbiodiesel-DEE blends increases with increase of oxygenated fuel fractions in the blends. Brake thermal efficiency shows little variation when operating on different dieselbiodiesel-DEE blends. At a low load, the NOx emission of the diesel-biodiesel-DEE blends exhibits little variation in comparison with the biodiesel fraction. The NOx emission slightly increases with increase in the biodiesel fraction in diesel-biodiesel-DEE blends at medium load. However,the NOx emission increases remarkably with increase of the biodiesel fraction at high load. Particle mass concentration decreases significantly with increase of the oxygenated-fuels fraction at all engine speeds and loads;particle number concentration decreases remarkably with increase of the oxygenated-fuels fraction. HC and CO emissions decrease with increasing oxygenated-fuels fraction in these blends.
In this paper,the effect ofcetane number (CN)improver on performance and emissions,including particulate number concentration and size distribution,of a turbocharged,common-rail diesel engine fueled with biodiesel-met...
详细信息
In this paper,the effect ofcetane number (CN)improver on performance and emissions,including particulate number concentration and size distribution,of a turbocharged,common-rail diesel engine fueled with biodiesel-methanol were *** volume fractions (0.3% and 0.6%) of CN improver were added to BM30 (30% of methanol in the biodiesel-methanol blend) in the *** results show that,compared with those of biodiesel-methanol blend,the peak value of cylinder pressure increases,the second peak of heat release rate decreases,the start of second heat release are advanced,and the fuel economy and thermal efficiency are improved when CN improver is added to biodiesel-methanol ***,CO and HC emissions decrease,NOx emission varies little and smoke emissions increase ***,exhaust particles of BM30 mainly distribute in nanosize ***,particle number concentration decreases and peak of size distribution profile shifts toward large size direction.
In the solar tower power plant, the receiver is one of the main components of efficient concentrating solar collector systems. In the design of the receiver, the heat flux distribution in the cavity should be consider...
详细信息
In the solar tower power plant, the receiver is one of the main components of efficient concentrating solar collector systems. In the design of the receiver, the heat flux distribution in the cavity should be considered first. In this study, a numerical simulation using the Monte Carlo Method has been conducted on the heat flux distribution in the cavity receiver, which consists of six lateral faces and floor and roof planes, with an aperture of 2.0m×2.0m on the front face. The mathematics and physical models of a single solar ray's launching,reflection, and absorption were proposed. By tracing every solar ray, the distribution of heat flux density in the cavity receiver was obtained. The numerical results show that the solar flux distribution on the absorbing panels is similar to that of CESA-I's. When the reradiation from walls was considered, the detailed heat flux distributions were issued, in which 49.10% of the total incident energy was absorbed by the central panels,47.02% by the side panels, and 3.88% was overflowed from the aperture. Regarding the peak heat flux, the value of up to 1196.406 kW/m2 was obtained in the center of absorbing panels. These results provide necessary data for the structure design of cavity receiver and the local thermal stress analysis for boiling and superheated panels.
The structural and electronic properties of low index (100) and (111) ZrO2-CeO2 interfaces are analyzed on the basis of density functional theory calculations. The formation energy and relative stability of substituti...
详细信息
The structural and electronic properties of low index (100) and (111) ZrO2-CeO2 interfaces are analyzed on the basis of density functional theory calculations. The formation energy and relative stability of substitutional defects, oxygen vacancies, and vacancy-dopant complexes are investigated for the (100) orientation. By comparing these results with the ones obtained in bulk structures, we provide a possible explanation for the higher experimental ionic conductivity measured at the interface.
Cryogen spray cooling (CSC) in conjunction with laser therapy has been the clinical standard for hypervascular lesions. In order to optimize nozzle and enhance the cooling efficiency to improve the treatment of laser ...
详细信息
Cryogen spray cooling (CSC) in conjunction with laser therapy has been the clinical standard for hypervascular lesions. In order to optimize nozzle and enhance the cooling efficiency to improve the treatment of laser surgery, an experimental system of transient cryogen spray cooling is built and eight straight-tube nozzles with different diameter and length are designed. A thin film thermocouple is directly deposited on the cooling surface to measure the surface temperature during the cryogen spray cooling. An analytical expression based on Fourier's law and Duhamel's theorem is used to calculate surface heat flux from the temperature measurements. Based on the measurements and calculations, the effect of the eight straight-tube nozzles on the heat transfer dynamics of the cooling surface and the atomization characterics are comparatively studied. Additionally, the criterion to evaluate the cooling efficiency of different nozzles is proposed, and the variation of heat extraction from the cooling surface with different spray distances by different nozzles is given.
暂无评论