The Ni-doped (CuIn)0.2Zn1.6S2 photocatalysts were prepared via a two-step ultrasonic-hydrothermal method under an environmental-friendly condition. XRD pattern profiles suggested that Ni2+ successfully doped into (CuI...
详细信息
The Ni-doped (CuIn)0.2Zn1.6S2 photocatalysts were prepared via a two-step ultrasonic-hydrothermal method under an environmental-friendly condition. XRD pattern profiles suggested that Ni2+ successfully doped into (CuIn)0.2Zn1.6S2 lattice. UV-Vis spectra indicated that the optical properties of the photocatalysts greatly depended on the amount of Ni doped. SEM images show that the samples were microspheres. The microsphere structures were gradually damaged with the increment of Ni doping amount. The photoactivity of (CuIn)0.2Zn1.6S2 was enhanced when Ni2+ was doped into the crystal structure. The H2 evolution performance over the prepared samples from inorganic/organic sacrificial solution was systematic investigated.
In this work, NiSx was deposited on FTO by chemical bath and worked as the inner layer in order to enhance the photocurrent of CdS film. It is found the unannealed CdS/NiSx had a higher photocurrent than unannealed Cd...
详细信息
In this work, NiSx was deposited on FTO by chemical bath and worked as the inner layer in order to enhance the photocurrent of CdS film. It is found the unannealed CdS/NiSx had a higher photocurrent than unannealed CdS, but after annealing, the photocurrent of CdS/NiSx showed dramatical decrease. The mechanism was discussed in detail by UPS and current-potential curves.
Based on selecting the proper formulas of thermal conductivity and viscosity for nanofluids, a three-dimensional fluid-solid conjugated model was developed to analyze the effect of the heat sink structure, the nanopar...
详细信息
Based on selecting the proper formulas of thermal conductivity and viscosity for nanofluids, a three-dimensional fluid-solid conjugated model was developed to analyze the effect of the heat sink structure, the nanoparticle kind, diameter and volume fraction, and the base fluid kind on the cooling performance of microchannel heat sink. The results showed that: (1) thermal dispersion effect caused by nanoparticle random motion enhanced the thermal convection of nanofluid thus enhances significantly the cooling performance of heat sink;(2) the enhancement of nanofluids was closely dependent on the heat sink structure and the dependence was distinct from the pure fluid, hence the heat sink structure was needed to be optimized for nanofluids as coolants;(3) as the nanoparticle volume fraction increases, the thermal resistance reduced and the pressure increased, the water-based Al2O3 nanofluid with 0.5% volume fraction was the optimal coolant which caused 10.1% decrease in the thermal resistance and only 0.38% increased in the pressure drop;(4) although the nanoparticle size had a small effect on the thermal resistance, nanoparticles with small diameter were recommended with consideration of stability of nanofluids;(5) Al2O3 nanoparticle was superior to TiO2 and CuO, and water was the better base fluid than ethylene glycol and engine oil.
Thermal conductivity of Ar-Cu nanofluid confined between two parallel walls (in a nanochannel) is calculated by equilibrium-molecular-dynamics (EMD) simulation through Green-Kubo formula. The results show that the vib...
详细信息
Radiation distribution study is of importance for the design and the optimization of fluidized photocatalytic tubular reactor which has been developed for photocatalytic hydrogen production under direct solar light. I...
详细信息
Radiation distribution study is of importance for the design and the optimization of fluidized photocatalytic tubular reactor which has been developed for photocatalytic hydrogen production under direct solar light. In the present study, the radiation distribution in such reactor was successfully simulated by adopting Monte Carlo method and the six-flux radiation absorption-scattering models. Both the incident angles of light around the reactor and the concentration distribution of photocatalyst were taken into account. Our analysis indicates that the angles and the intensity of the incident rays significantly affect the radiation distribution. Moreover, it was also found that the equilibrium radiation distribution has a close relationship with the density distribution of the photocatalysts. The simulated results are expected to be helpful for obtaining the optimal operating parameters for solar photocatalytic hydrogen production.
In order to improve the accuracy of interface capturing and keeping the computational efficiency, an adaptive VOF method on unstructured grid is proposed in this paper. The volume fraction in each cell is regarded as ...
In order to improve the accuracy of interface capturing and keeping the computational efficiency, an adaptive VOF method on unstructured grid is proposed in this paper. The volume fraction in each cell is regarded as the criterion to locally refine the interface cell. With the movement of interface, new interface cells (0 ≤ f ≤ 1) are subdivided into child cells, while those child cells that no longer contain interface will be merged back into the original parent cell. In order to avoid the complicated redistribution of volume fraction during the subdivision and amalgamation procedure, a predictor‐corrector algorithm is proposed to implement the subdivision and amalgamation procedures only in empty or full cell ( f = 0 or 1). Thus volume fraction in the new cell can take the value from the original cell directly, and the interpolation of the interface is avoided. The advantage of this method is that the re‐generation of the whole grid system is not necessary, so its implementation is very efficient. Moreover, an advection flow test of a hollow square was performed, and the relative shape error of the result obtained by adaptive mesh is smaller than those by non‐refined grid, which verifies the validation of our method.
A model for wave properties, such as wave velocity and amplitude in churn flow has been developed in this paper. The results demonstrate that the wave behavior differs from that in annular flow. In addition, the criti...
详细信息
A model for wave properties, such as wave velocity and amplitude in churn flow has been developed in this paper. The results demonstrate that the wave behavior differs from that in annular flow. In addition, the critical amplitude A c decreases with the increase in gas flow rate. Moreover, the maximum amplitude A max decreases with the increasing of gas mass flux but increase with the increasing of liquid mass flux. The average absolute deviations (AAD) for A c and A max are 16.29% and 7.10%, respectively.
In this work a series of Eosin Y-ZnO(x%)/TiO2 were prepared. ZnO well dispersed on the surface of TiO2, which improves the adsorption of Eosin Y and the excited electron to transfer to the conduction band of TiO2. The...
详细信息
In this work a series of Eosin Y-ZnO(x%)/TiO2 were prepared. ZnO well dispersed on the surface of TiO2, which improves the adsorption of Eosin Y and the excited electron to transfer to the conduction band of TiO2. Therefore the visible light activity of 0.2%Pt-Eosin Y-ZnO(x%)/TiO2 is much higher than that of the 0.2%Pt-Eosin Y-TiO2 and 0.2%Pt-Eosin Y-ZnO. The 0.2%Pt-Eosin Y- ZnO(1.5%)/TiO2 has the highest visible light activity among the catalysts coupled with various ZnO amount, whose activity is increased by a factor of 3.5 compared to that of 0.2%Pt-Eosin Y-TiO2. It is proposed that, 0.2%Pt-Eosin Y-ZnO(1.5%)/TiO2 has the optimal trapping sites of carriers and thickness of the space-charge layer on the TiO2 particle surface, so these factors result a more efficient charge separation, an increased lifetime of the charge carriers, and the enhanced of hydrogen production.
Radiation distribution study is of importance for the design and the optimization of fluidized photocatalytic tubular reactor which has been developed for photocatalytic hydrogen production under direct solar light. I...
详细信息
Radiation distribution study is of importance for the design and the optimization of fluidized photocatalytic tubular reactor which has been developed for photocatalytic hydrogen production under direct solar light. In the present study, the radiation distribution in such reactor was successfully simulated by adopting Monte Carlo method and the six-flux radiation absorption-scattering models. Both the incident angles of light around the reactor and the concentration distribution of photocatalyst were taken into account. Our analysis indicates that the angles and the intensity of the incident rays significantly affect the radiation distribution. Moreover, it was also found that the equilibrium radiation distribution has a close relationship with the density distribution of the photocatalysts. The simulated results are expected to be helpful for obtaining the optimal operating parameters for solar photocatalytic hydrogen production.
An effective way to boost natural gas production from low pressure gas field was introduced in the paper. The supersonic ejector used the energ off high pressure gas wells, which was generally wasted through the choke...
详细信息
暂无评论