咨询与建议

限定检索结果

文献类型

  • 103 篇 期刊文献
  • 60 篇 会议

馆藏范围

  • 163 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 101 篇 工学
    • 64 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 28 篇 信息与通信工程
    • 27 篇 光学工程
    • 26 篇 电子科学与技术(可...
    • 17 篇 电气工程
    • 9 篇 控制科学与工程
    • 9 篇 生物工程
    • 8 篇 材料科学与工程(可...
    • 5 篇 动力工程及工程热...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 网络空间安全
    • 3 篇 力学(可授工学、理...
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
  • 95 篇 理学
    • 68 篇 物理学
    • 30 篇 数学
    • 16 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 6 篇 化学
    • 6 篇 天文学
    • 4 篇 系统科学
  • 9 篇 管理学
    • 6 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 3 篇 公共卫生与预防医...
  • 1 篇 教育学

主题

  • 11 篇 qubits
  • 11 篇 quantum algorith...
  • 6 篇 quantum computat...
  • 5 篇 quantum simulati...
  • 5 篇 quantum error co...
  • 5 篇 quantum gates
  • 4 篇 conferences
  • 4 篇 atoms
  • 4 篇 quantum computer...
  • 4 篇 machine learning
  • 3 篇 image enhancemen...
  • 3 篇 deep neural netw...
  • 3 篇 software enginee...
  • 3 篇 conformance chec...
  • 3 篇 errors
  • 3 篇 synchronization
  • 3 篇 quantum informat...
  • 3 篇 convolutional ne...
  • 3 篇 process mining
  • 2 篇 surveys

机构

  • 37 篇 ntt computer and...
  • 34 篇 ntt computer and...
  • 17 篇 ntt computer and...
  • 16 篇 jst presto 4-1-8...
  • 13 篇 ntt communicatio...
  • 13 篇 jst presto 4-1-8...
  • 9 篇 graduate school ...
  • 8 篇 computer and dat...
  • 7 篇 department of ap...
  • 6 篇 graduate school ...
  • 5 篇 ntt computer & d...
  • 5 篇 computer and dat...
  • 5 篇 kyoto university
  • 5 篇 center for quant...
  • 5 篇 ntt computer and...
  • 4 篇 1-1-1 umezono ib...
  • 4 篇 ntt social infor...
  • 4 篇 nec-aist quantum...
  • 4 篇 computer and dat...
  • 4 篇 wako-shi saitama...

作者

  • 26 篇 suzuki yasunari
  • 21 篇 endo suguru
  • 20 篇 tokunaga yuuki
  • 14 篇 kumagai atsutosh...
  • 13 篇 yuuki tokunaga
  • 11 篇 yasunari suzuki
  • 11 篇 matsuzaki yuichi...
  • 11 篇 suguru endo
  • 8 篇 fujiwara yasuhir...
  • 8 篇 ryo masumura
  • 8 篇 asaoka rui
  • 8 篇 atsutoshi kumaga...
  • 8 篇 shinobu saito
  • 7 篇 hakoshima hideak...
  • 7 篇 chijiwa daiki
  • 7 篇 yoshioka nobuyuk...
  • 7 篇 masumura ryo
  • 7 篇 iwata tomoharu
  • 6 篇 fujii keisuke
  • 6 篇 ida yasutoshi

语言

  • 154 篇 英文
  • 9 篇 其他
  • 1 篇 日文
检索条件"机构=NTT Computer and Data Science Laboratories"
163 条 记 录,以下是51-60 订阅
排序:
A Security Verification Framework of Cryptographic Protocols Using Machine Learning
arXiv
收藏 引用
arXiv 2023年
作者: Ohno, Kentaro Nakabayashi, Misato NTT Computer & Data Science Laboratories Japan NTT Social Informatics Laboratories Japan
We propose a security verification framework for cryptographic protocols using machine learning. In recent years, as cryptographic protocols have become more complex, research on automatic verification techniques has ... 详细信息
来源: 评论
Covariance-Aware Feature Alignment with Pre-Computed Source Statistics for Test-Time Adaptation to Multiple Image Corruptions
Covariance-Aware Feature Alignment with Pre-Computed Source ...
收藏 引用
IEEE International Conference on Image Processing
作者: Kazuki Adachi Shin’Ya Yamaguchi Atsutoshi Kumagai NTT Computer and Data Science Laboratories Kyoto University
Real-world image recognition systems often face corrupted input images, which cause distribution shifts and degrade the performance of models. These systems often use a single prediction model in a central server and ...
来源: 评论
Recurrent Neural Networks for Learning Long-term Temporal Dependencies with Reanalysis of Time Scale Representation  12
Recurrent Neural Networks for Learning Long-term Temporal De...
收藏 引用
12th IEEE International Conference on Big Knowledge, ICBK 2021
作者: Ohno, Kentaro Kumagai, Atsutoshi NTT Computer Data Science Laboratories Japan
Recurrent neural networks with a gating mechanism such as an LSTM or GRU are powerful tools to model sequential data. In the mechanism, a forget gate, which was introduced to control information flow in a hidden state... 详细信息
来源: 评论
Adversarial Finetuning with Latent Representation Constraint to Mitigate Accuracy-Robustness Tradeoff
arXiv
收藏 引用
arXiv 2023年
作者: Suzuki, Satoshi Yamaguchi, Shinya Takeda, Shoichiro Kanai, Sekitoshi Makishima, Naoki Ando, Atsushi Masumura, Ryo NTT Computer and Data Science Laboratories Kyoto University Japan NTT Human Informatics Laboratories
This paper addresses the tradeoff between standard accuracy on clean examples and robustness against adversarial examples in deep neural networks (DNNs). Although adversarial training (AT) improves robustness, it degr... 详细信息
来源: 评论
Edit and Alphabet-Ordering Sensitivity of Lex-Parse  49
Edit and Alphabet-Ordering Sensitivity of Lex-Parse
收藏 引用
49th International Symposium on Mathematical Foundations of computer science, MFCS 2024
作者: Nakashima, Yuto Köppl, Dominik Funakoshi, Mitsuru Inenaga, Shunsuke Bannai, Hideo Department of Informatics Kyushu University Fukuoka Japan Department of Computer Science and Engineering University of Yamanashi Kofu Japan M&D Data Science Center Tokyo Medical and Dental University Japan NTT Communication Science Laboratories Kyoto Japan
We investigate the compression sensitivity [Akagi et al., 2023] of lex-parse [Navarro et al., 2021] for two operations: (1) single character edit and (2) modification of the alphabet ordering, and give tight upper and... 详细信息
来源: 评论
Improving Raft Performance with Bulk Transfers
Improving Raft Performance with Bulk Transfers
收藏 引用
International Symposium on Computing and Networking Workshops (CANDARW)
作者: Aoi Yamashita Masahiro Tanaka Yutaro Bessho Yasuhiro Fujiwara Hideyuki Kawashima Graduate School of Keio University NTT Computer and Data Science Laboratories NTT Communication Science Laboratories Keio University
Raft is known as a replicating state machine that tolerates crash faults, and its use enables various distributed systems, including distributed transaction processing systems. The original Raft protocol creates an in...
来源: 评论
Meta-ticket: finding optimal subnetworks for few-shot learning within randomly initialized neural networks  22
Meta-ticket: finding optimal subnetworks for few-shot learni...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Daiki Chijiwa Shin'ya Yamaguchi Atsutoshi Kumagai Yasutoshi Ida NTT Computer and Data Science Laboratories NTT Corporation NTT Computer and Data Science Laboratories NTT Corporation and Kyoto University
Few-shot learning for neural networks (NNs) is an important problem that aims to train NNs with a few data. The main challenge is how to avoid overfitting since over-parameterized NNs can easily overfit to such small ...
来源: 评论
Few-shot learning for feature selection with hilbert-schmidt independence criterion  22
Few-shot learning for feature selection with hilbert-schmidt...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Atsutoshi Kumagai Tomoharu Iwata Yasutoshi Ida Yasuhiro Fujiwara NTT Computer and Data Science Laboratories NTT Communication Science Laboratories
We propose a few-shot learning method for feature selection that can select relevant features given a small number of labeled instances. Existing methods require many labeled instances for accurate feature selection. ...
来源: 评论
Fast Binary Network Hashing via Graph Clustering
Fast Binary Network Hashing via Graph Clustering
收藏 引用
IEEE International Conference on Big data
作者: Yasuhiro Fujiwaray Masahiro Nakanoy Atsutoshi Kumagai Yasutoshi Idaz Akisato Kimura Naonori Ueda NTT Communication Science Laboratories NTT Computer and Data Science Laboratories
Network hashing converts each node of a graph into a compact binary code, and it is a useful graph analytics tool since it can reduce memory cost. INH-MF is a network hashing approach to factorize the high-order proxi... 详细信息
来源: 评论
META-LEARNING FOR OUT-OF-DISTRIBUTION DETECTION VIA DENSITY ESTIMATION IN LATENT SPACE
arXiv
收藏 引用
arXiv 2022年
作者: Iwata, Tomoharu Kumagai, Atsutoshi NTT Communication Science Laboratories NTT Computer and Data Science Laboratories
Many neural network-based out-of-distribution (OoD) detection methods have been proposed. However, they require many training data for each target task. We propose a simple yet effective meta-learning method to detect... 详细信息
来源: 评论