咨询与建议

限定检索结果

文献类型

  • 258 篇 期刊文献
  • 117 篇 会议
  • 1 册 图书

馆藏范围

  • 376 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 241 篇 工学
    • 151 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 66 篇 生物工程
    • 44 篇 生物医学工程(可授...
    • 40 篇 信息与通信工程
    • 34 篇 控制科学与工程
    • 25 篇 光学工程
    • 20 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 机械工程
    • 8 篇 仪器科学与技术
  • 184 篇 理学
    • 92 篇 数学
    • 66 篇 生物学
    • 54 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 16 篇 化学
    • 15 篇 地球物理学
  • 64 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 36 篇 医学
    • 32 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 13 篇 公共卫生与预防医...
    • 13 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 教育学
  • 6 篇 农学
  • 5 篇 法学
  • 1 篇 文学

主题

  • 16 篇 deep learning
  • 15 篇 image segmentati...
  • 15 篇 machine learning
  • 12 篇 accuracy
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 cosmology

机构

  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 13 篇 munich data scie...
  • 11 篇 peking universit...
  • 11 篇 national biomedi...
  • 10 篇 national enginee...
  • 9 篇 school of mathem...
  • 8 篇 mdsi – munich da...
  • 8 篇 mcml – munich ce...
  • 7 篇 munich data scie...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 data science in ...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich center fo...

作者

  • 19 篇 zhu xiao xiang
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 10 篇 zhang li
  • 8 篇 zifan chen
  • 8 篇 chen zifan
  • 8 篇 shi yilei
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 6 篇 li hongwei bran
  • 6 篇 zhao jie
  • 6 篇 linguraru marius...
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...

语言

  • 299 篇 英文
  • 74 篇 其他
  • 1 篇 中文
检索条件"机构=NTT Machine Learning and Data Science Center"
376 条 记 录,以下是91-100 订阅
排序:
On the Effectiveness of Heterogeneous Ensemble Methods for Re-Identification
On the Effectiveness of Heterogeneous Ensemble Methods for R...
收藏 引用
International Conference on machine learning and Applications (ICMLA)
作者: Simon Klüttermann Jérôme Rutinowski Frederik Polachowski Anh Nguyen Britta Grimme Moritz Roidl Emmanuel Müller TU Dortmund University Dortmund Germany Lamarr Institute for Machine Learning and Artificial Intelligence Dortmund Germany Paderborn University Paderborn Germany Research Center Trustworthy Data Science and Security Dortmund Germany
In this contribution, we introduce a novel ensemble method for the re-identification of industrial entities, using images of chipwood pallets and galvanized metal plates as dataset examples. Our algorithms replace com... 详细信息
来源: 评论
A Two-Stage Minimum Cost Multicut Approach to Self-supervised Multiple Person Tracking  15th
A Two-Stage Minimum Cost Multicut Approach to Self-supervise...
收藏 引用
15th Asian Conference on Computer Vision, ACCV 2020
作者: Ho, Kalun Kardoost, Amirhossein Pfreundt, Franz-Josef Keuper, Janis Keuper, Margret Fraunhofer Center Machine Learning Sankt Augustin Germany CC-HPC Fraunhofer ITWM Kaiserslautern Germany Data and Web Science Group University of Mannheim Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Offenburg Germany
Multiple Object Tracking (MOT) is a long-standing task in computer vision. Current approaches based on the tracking by detection paradigm either require some sort of domain knowledge or supervision to associate data c... 详细信息
来源: 评论
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmentation  24
Optimal bounds for ℓp sensitivity sampling via ℓ2 augmenta...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop...
来源: 评论
Global High Categorical Resolution Land Cover Mapping via Weak Supervision
arXiv
收藏 引用
arXiv 2024年
作者: Tong, Xin-Yi Dong, Runmin Zhu, Xiao Xiang Chair of Data Science in Earth Observation Technical University of Munich Germany Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System Science Tsinghua University China Munich Center for Machine Learning Germany
Land cover information is indispensable for advancing the United Nations’ sustainable development goals, and land cover mapping under a more detailed category system would significantly contribute to economic livelih... 详细信息
来源: 评论
Turnstile ℓp leverage score sampling with applications  24
Turnstile ℓp leverage score sampling with applications
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Alexander Munteanu Simon Omlor Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics TU Dortmund University Dortmund Germany and Lamarr-Institute for Machine Learning and Artificial Intelligence Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ...
来源: 评论
machine-learning Force Fields Reveal Shallow Electronic States on Dynamic Halide Perovskite Surfaces
arXiv
收藏 引用
arXiv 2025年
作者: Delgado, Frederico P. Simões, Frederico Kronik, Leeor Kaiser, Waldemar Egger, David A. Physics Department TUM School of Natural Sciences Technical University of Munich Germany Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Israel Atomistic Modeling Center Munich Data Science Institute Technical University of Munich Germany Munich Center for Machine Learning Munich Germany
The spectacular performance of halide perovskites in optoelectronic devices is rooted in their favorable tolerance to structural defects. Previous studies showed that defects in these materials generate shallow electr... 详细信息
来源: 评论
GraphMorph: Tubular Structure Extraction by Morphing Predicted Graphs
arXiv
收藏 引用
arXiv 2025年
作者: Zhang, Zhao Zhao, Ziwei Wang, Dong Wang, Liwei Center for Data Science Peking University China Yizhun Medical AI Co. Ltd China State Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Center for Machine Learning Research Peking University China China
Accurately restoring topology is both challenging and crucial in tubular structure extraction tasks, such as blood vessel segmentation and road network extraction. Diverging from traditional approaches based on pixel-... 详细信息
来源: 评论
Your Transformer May Not be as Powerful as You Expect  36
Your Transformer May Not be as Powerful as You Expect
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Luo, Shengjie Li, Shanda Zheng, Shuxin Liu, Tie-Yan Wang, Liwei He, Di National Key Laboratory of General Artificial Intelligence School of Intelligence Science and Technology Peking University China Machine Learning Department School of Computer Science Carnegie Mellon University United States Microsoft Research United States Center for Data Science Peking University China Zhejiang Lab China
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding... 详细信息
来源: 评论
Gradient is All You Need?
arXiv
收藏 引用
arXiv 2023年
作者: Riedl, Konstantin Klock, Timo Geldhauser, Carina Fornasier, Massimo Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Deeptech Consulting Oslo Norway Munich Data Science Institute Munich Germany
In this paper we provide a novel analytical perspective on the theoretical understanding of gradient-based learning algorithms by interpreting consensus-based optimization (CBO), a recently proposed multi-particle der... 详细信息
来源: 评论
An Improved Finite-time Analysis of Temporal Difference learning with Deep Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Ke, Zhifa Wen, Zaiwen Zhang, Junyu Center for Data Science Peking University China Beijing International Center for Mathematical Research Center for Machine Learning Research Changsha Institute for Computing and Digital Economy Beijing China Department of Industrial Systems Engineering and Management National University of Singapore Singapore
Temporal difference (TD) learning algorithms with neural network function parameterization have well-established empirical success in many practical large-scale reinforcement learning tasks. However, theoretical under... 详细信息
来源: 评论