咨询与建议

限定检索结果

文献类型

  • 262 篇 期刊文献
  • 118 篇 会议
  • 1 册 图书

馆藏范围

  • 381 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 153 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 67 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 信息与通信工程
    • 34 篇 控制科学与工程
    • 24 篇 光学工程
    • 21 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 187 篇 理学
    • 92 篇 数学
    • 68 篇 生物学
    • 54 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 17 篇 化学
    • 15 篇 地球物理学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 29 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 36 篇 医学
    • 32 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 6 篇 教育学
  • 5 篇 法学
  • 1 篇 文学

主题

  • 16 篇 machine learning
  • 15 篇 deep learning
  • 13 篇 image segmentati...
  • 12 篇 accuracy
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 cosmology

机构

  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 13 篇 munich data scie...
  • 11 篇 peking universit...
  • 11 篇 national biomedi...
  • 10 篇 national enginee...
  • 9 篇 school of mathem...
  • 8 篇 mdsi – munich da...
  • 8 篇 mcml – munich ce...
  • 7 篇 munich data scie...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 10 篇 zhang li
  • 8 篇 zifan chen
  • 8 篇 chen zifan
  • 8 篇 shi yilei
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 6 篇 li hongwei bran
  • 6 篇 zhao jie
  • 6 篇 linguraru marius...
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...

语言

  • 295 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=NTT Machine Learning and Data Science Center"
381 条 记 录,以下是111-120 订阅
排序:
Improving generalization and convergence by enhancing implicit regularization  24
Improving generalization and convergence by enhancing implic...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Mingze Wang Jinbo Wang Haotian He Zilin Wang Guanhua Huang Feiyu Xiong Zhiyu Li Weinan E Lei Wu School of Mathematical Sciences Peking University and Institute for Advanced Algorithms Research (Shanghai) School of Mathematical Sciences Peking University School of Data Science University of Science and Technology of China and ByteDance Research Institute for Advanced Algorithms Research (Shanghai) School of Mathematical Sciences Peking University and Center for Machine Learning Research Peking University and Institute for Advanced Algorithms Research (Shanghai) and AI for Science Institute School of Mathematical Sciences Peking University and Center for Machine Learning Research Peking University
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou...
来源: 评论
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Representations
Noisy Recovery in Unlimited Sampling via Adaptive Modulo Rep...
收藏 引用
International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa)
作者: Felipe Pagginelli Patricio Paul Catala Felix Krahmer Dept. of Mathematics TU Munich Garching Germany IBMI Helmholtz Munich Neuherberg Germany Dept. of Mathematics&Munich Data Science Institute TU Munich and Munich Center for Machine Learning Garching
Recent works put forth the Unlimited Sensing Framework (USF), a novel approach to analog-to-digital conversion for high dynamic range sensing. It addresses the saturation phenomenon that commonly arises when physical ... 详细信息
来源: 评论
Multi-Scale Clinical-Guided Binocular Fusion Framework for Predicting New-Onset Hypertension Over a Four-Year Period
Multi-Scale Clinical-Guided Binocular Fusion Framework for P...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Haoshen Li Zifan Chen Jie Zhao Heyun Chen Hexin Dong Mingze Yuan Bin Dong Li Zhang Center for Data Science Peking University China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China
Hypertension is a major global health concern, linked to various cardiovascular diseases and associated with distinct ocular manifestations. While recent advances in artificial intelligence have enabled accurate diagn... 详细信息
来源: 评论
Audio-based Kinship Verification Using Age Domain Conversion
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Qiyang Akman, Alican Jing, Xin Milling, Manuel Schuller, Björn W. GLAM Department of Computing Imperial College London United Kingdom MRI Technical University of Munich Germany MDSI – Munich Data Science Institute Munich Germany MCML – Munich Center for Machine Learning Munich Germany
Audio-based kinship verification (AKV) is important in many domains, such as home security monitoring, forensic identification, and social network analysis. A key challenge in the task arises from differences in age a... 详细信息
来源: 评论
Enrolment-based personalisation for improving individual-level fairness in speech emotion recognition
arXiv
收藏 引用
arXiv 2024年
作者: Triantafyllopoulos, Andreas Schuller, Björn MRI Technical University of Munich Germany MCML - Munich Center for Machine Learning Germany MDSI - Munich Data Science Institute Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom
The expression of emotion is highly individualistic. However, contemporary speech emotion recognition (SER) systems typically rely on population-level models that adopt a 'one-size-fits-all' approach for predi... 详细信息
来源: 评论
A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification
arXiv
收藏 引用
arXiv 2024年
作者: Marks, Markus Knott, Manuel Kondapaneni, Neehar Cole, Elijah Defraeye, Thijs Perez-Cruz, Fernando Perona, Pietro California Institute of Technology United States ETH Zurich Institute for Machine Learning Department of Computer Science Switzerland Swiss Data Science Center ETH Zurich and EPFL Switzerland Empa Swiss Federal Laboratories for Materials Science and Technology Switzerland Altos Labs Switzerland
Self-supervised learning (SSL) is a machine learning approach where the data itself provides supervision, eliminating the need for external labels. The model is forced to learn about the data's inherent structure ... 详细信息
来源: 评论
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Bonfanti, Andrea Bruno, Giuseppe Cipriani, Cristina BMW AG Basque Center for Applied Mathematics University of the Basque Country Digital Campus Munich Spain BMW AG Digital Campus Munich Germany Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute Germany
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa... 详细信息
来源: 评论
Nonparametric inference of higher order interaction patterns in networks
arXiv
收藏 引用
arXiv 2024年
作者: Wegner, Anatol E. Olhede, Sofia C. Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science University of Würzburg Würzburg97070 Germany Institute of Mathematics École Polytechnique Fédérale de Lausanne Lausanne1015 Switzerland
We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs. The method is based on a class of analytically solvable generative ... 详细信息
来源: 评论
CENTRAL LIMIT THEOREMS FOR SMOOTH OPTIMAL TRANSPORT MAPS
arXiv
收藏 引用
arXiv 2023年
作者: Manole, Tudor Balakrishnan, Sivaraman Niles-Weed, Jonathan Wasserman, Larry Statistics and Data Science Center Massachusetts Institute of Technology United States Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Center for Data Science New York University United States Courant Institute of Mathematical Sciences New York University United States
One of the central objects in the theory of optimal transport is the Brenier map: the unique monotone transformation which pushes forward an absolutely continuous probability law onto any other given law. A line of re... 详细信息
来源: 评论
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论