咨询与建议

限定检索结果

文献类型

  • 258 篇 期刊文献
  • 117 篇 会议
  • 1 册 图书

馆藏范围

  • 376 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 241 篇 工学
    • 151 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 66 篇 生物工程
    • 44 篇 生物医学工程(可授...
    • 40 篇 信息与通信工程
    • 34 篇 控制科学与工程
    • 25 篇 光学工程
    • 20 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 机械工程
    • 8 篇 仪器科学与技术
  • 184 篇 理学
    • 92 篇 数学
    • 66 篇 生物学
    • 54 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 16 篇 化学
    • 15 篇 地球物理学
  • 64 篇 管理学
    • 34 篇 图书情报与档案管...
    • 30 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 36 篇 医学
    • 32 篇 临床医学
    • 24 篇 基础医学(可授医学...
    • 13 篇 公共卫生与预防医...
    • 13 篇 药学(可授医学、理...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 教育学
  • 6 篇 农学
  • 5 篇 法学
  • 1 篇 文学

主题

  • 16 篇 deep learning
  • 15 篇 image segmentati...
  • 15 篇 machine learning
  • 12 篇 accuracy
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 cosmology

机构

  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 13 篇 munich data scie...
  • 11 篇 peking universit...
  • 11 篇 national biomedi...
  • 10 篇 national enginee...
  • 9 篇 school of mathem...
  • 8 篇 mdsi – munich da...
  • 8 篇 mcml – munich ce...
  • 7 篇 munich data scie...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 data science in ...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich center fo...

作者

  • 19 篇 zhu xiao xiang
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 10 篇 zhang li
  • 8 篇 zifan chen
  • 8 篇 chen zifan
  • 8 篇 shi yilei
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 6 篇 li hongwei bran
  • 6 篇 zhao jie
  • 6 篇 linguraru marius...
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...

语言

  • 299 篇 英文
  • 74 篇 其他
  • 1 篇 中文
检索条件"机构=NTT Machine Learning and Data Science Center"
376 条 记 录,以下是71-80 订阅
排序:
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Felix Krahmer Anna Veselovska Dept. of Mathematics & Munich Data Science Institute Technical University of Munich and Munich Center for Machine Learning Garching/Munich Germany
In this paper, we propose 1-bit weighted Σ∆ quantization schemes of mixed order as a technique for digital halftoning. These schemes combine weighted Σ∆ schemes of different orders for two-dimensional signals so one...
来源: 评论
CUTE: Measuring LLMs' Understanding of Their Tokens
arXiv
收藏 引用
arXiv 2024年
作者: Edman, Lukas Schmid, Helmut Fraser, Alexander Center for Information and Language Processing LMU Munich Germany School of Computation Information and Technology TU Munich Germany Munich Center for Machine Learning Germany Munich Data Science Institute Germany
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks. Most LLMs split text into multi-character tokens and process them as atomic units without direct access to individual characters. Th...
来源: 评论
BIM: Improving Graph Neural Networks with Balanced Influence Maximization  40
BIM: Improving Graph Neural Networks with Balanced Influence...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Gao, Xinyi Yang, Ling Cao, Meng Huang, Ping Shan, Jiulong Yin, Hongzhi Cui, Bin Peking University Center for Machine Learning Research China Institute of Advanced Algorithms Research Shanghai China National Engineering Labratory for Big Data Analytics and Applications The University of Queensland Australia Peking University Key Lab of High Confidence Software Technologies China Apple Inc. Institute of Computational Social Science Peking University Qingdao China
The imbalanced data classification problem has aroused lots of concerns from both academia and industry since data imbalance is a widespread phenomenon in many real-world scenarios. Although this problem has been well... 详细信息
来源: 评论
RDMP: A Reference Detection and Mask Propagation Pipeline for Numerous 3D Glomeruli Segmentation in Large Volumes  22
RDMP: A Reference Detection and Mask Propagation Pipeline fo...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Lin, Ziling Li, Zehua Chen, Zifan Lu, Yao Zhou, Fangxu Dong, Bin Zhang, Li Li, Haifeng Peking University Center for Data Science Beijing China Peking University First Hospital Beijing China College of Future Technology Peking University Beijing China Peking University Beijing International Center for Mathematical Research Beijing China Peking University Center for Machine Learning Research Beijing China Peking University National Biomedical Imaging Center Beijing China
Quantitative analysis of numerous repetitive structures in large volumes is one of the most challenging tasks in biomedical imaging, primarily due to its intensive manual requirements. Kidney glomeruli exemplify this ... 详细信息
来源: 评论
Bounding the number of reticulation events for displaying multiple trees in a phylogenetic network
arXiv
收藏 引用
arXiv 2024年
作者: Wu, Yufeng Zhang, Louxin School of Computing University of Connecticut StorrsCT06269 United States Department of Mathematics Center for Data Science and Machine Learning National University of Singapore Singapore119076 Singapore
Reconstructing a parsimonious phylogenetic network that displays multiple phylogenetic trees is an important problem in phylogenetics, where the complexity of the inferred networks is measured by reticulation numbers.... 详细信息
来源: 评论
A Minimax Optimal Control Approach for Robust Neural ODEs
A Minimax Optimal Control Approach for Robust Neural ODEs
收藏 引用
European Control Conference (ECC)
作者: Cristina Cipriani Alessandro Scagliotti Tobias Wöhrer Department of Mathematics Technical University Munich (TUM) Munich Germany Munich Data Science Institute (MDSI) Munich Germany Munich Center for Machine Learning (MCML) Munich Germany
In this paper, we address the adversarial training of neural ODEs from a robust control perspective. This is an alternative to the classical training via empirical risk minimization, and it is widely used to enforce r... 详细信息
来源: 评论
A REDUCTION-BASED FRAMEWORK FOR CONSERVATIVE BANDITS AND REINFORCEMENT learning  10
A REDUCTION-BASED FRAMEWORK FOR CONSERVATIVE BANDITS AND REI...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Yang, Yunchang Wu, Tianhao Zhong, Han Garcelon, Evrard Pirotta, Matteo Lazaric, Alessandro Wang, Liwei Du, Simon S. Center for Data Science Peking University China University of California Berkeley United States Facebook AI Research Key Laboratory of Machine Perception MOE School of Artificial Intelligence Peking University China International Center for Machine Learning Research Peking University China University of Washington United States
We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world ... 详细信息
来源: 评论
Decoupling Common and Unique Representations for Multimodal Self-supervised learning
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Yi Albrecht, Conrad M. Braham, Nassim Ait Ali Liu, Chenying Xiong, Zhitong Zhu, Xiao Xiang Data Science in Earth Observation Technical University of Munich Germany Remote Sensing Technology Institute German Aerospace Center Germany Munich Center for Machine Learning Germany
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-... 详细信息
来源: 评论
Optimal bounds for p sensitivity sampling via 2 augmentation
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points prop... 详细信息
来源: 评论
Turnstile p leverage score sampling with applications
arXiv
收藏 引用
arXiv 2024年
作者: Munteanu, Alexander Omlor, Simon Dortmund Data Science Center Faculties of Statistics and Computer Science TU Dortmund University Dortmund Germany Faculty of Statistics and Lamarr Institute for Machine Learning and Artificial Intelligence TU Dortmund University Dortmund Germany
The turnstile data stream model offers the most flexible framework where data can be manipulated dynamically, i.e., rows, columns, and even single entries of an input matrix can be added, deleted, or updated multiple ... 详细信息
来源: 评论