咨询与建议

限定检索结果

文献类型

  • 262 篇 期刊文献
  • 118 篇 会议
  • 1 册 图书

馆藏范围

  • 381 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 153 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 67 篇 生物工程
    • 45 篇 生物医学工程(可授...
    • 41 篇 信息与通信工程
    • 34 篇 控制科学与工程
    • 24 篇 光学工程
    • 21 篇 电气工程
    • 14 篇 电子科学与技术(可...
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 力学(可授工学、理...
    • 9 篇 仪器科学与技术
  • 187 篇 理学
    • 92 篇 数学
    • 68 篇 生物学
    • 54 篇 物理学
    • 45 篇 统计学(可授理学、...
    • 21 篇 系统科学
    • 17 篇 化学
    • 15 篇 地球物理学
  • 63 篇 管理学
    • 34 篇 图书情报与档案管...
    • 29 篇 管理科学与工程(可...
    • 13 篇 工商管理
  • 36 篇 医学
    • 32 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
    • 12 篇 公共卫生与预防医...
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 7 篇 农学
  • 6 篇 教育学
  • 5 篇 法学
  • 1 篇 文学

主题

  • 16 篇 machine learning
  • 15 篇 deep learning
  • 13 篇 image segmentati...
  • 12 篇 accuracy
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 contrastive lear...
  • 6 篇 predictive model...
  • 5 篇 semantic segment...
  • 5 篇 galaxies
  • 5 篇 generative adver...
  • 5 篇 noise measuremen...
  • 5 篇 noise
  • 5 篇 graph neural net...
  • 5 篇 semantics
  • 5 篇 stochastic syste...
  • 5 篇 diseases
  • 4 篇 reinforcement le...
  • 4 篇 data mining
  • 4 篇 cosmology

机构

  • 40 篇 center for data ...
  • 37 篇 center for machi...
  • 33 篇 munich center fo...
  • 17 篇 munich center fo...
  • 15 篇 beijing internat...
  • 13 篇 munich data scie...
  • 11 篇 peking universit...
  • 11 篇 national biomedi...
  • 10 篇 national enginee...
  • 9 篇 school of mathem...
  • 8 篇 mdsi – munich da...
  • 8 篇 mcml – munich ce...
  • 7 篇 munich data scie...
  • 7 篇 national key lab...
  • 7 篇 center for intel...
  • 6 篇 machine learning...
  • 6 篇 dortmund data sc...
  • 6 篇 department of co...
  • 6 篇 munich data scie...
  • 6 篇 peking universit...

作者

  • 19 篇 zhu xiao xiang
  • 15 篇 schuller björn w...
  • 13 篇 krahmer felix
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 dong bin
  • 10 篇 li zhang
  • 10 篇 bin dong
  • 10 篇 zhang li
  • 8 篇 zifan chen
  • 8 篇 chen zifan
  • 8 篇 shi yilei
  • 7 篇 jie zhao
  • 7 篇 veselovska anna
  • 7 篇 fornasier massim...
  • 6 篇 li hongwei bran
  • 6 篇 zhao jie
  • 6 篇 linguraru marius...
  • 6 篇 weinan e.
  • 6 篇 björn w. schulle...

语言

  • 295 篇 英文
  • 83 篇 其他
  • 1 篇 中文
检索条件"机构=NTT Machine Learning and Data Science Center"
381 条 记 录,以下是81-90 订阅
排序:
Private, Efficient and Scalable Kernel learning for Medical Image Analysis  19th
Private, Efficient and Scalable Kernel Learning for Medica...
收藏 引用
19th International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2024
作者: Hannemann, Anika Swaminathan, Arjhun Ünal, Ali Burak Akgün, Mete Department of Computer Science Leipzig University Leipzig Germany Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig Germany Medical Data Privacy and Privacy-preserving Machine Learning (MDPPML) University of Tübingen Tübingen Germany Institute for Bioinformatics and Medical Informatics (IBMI) University of Tübingen Tübingen Germany
Medical imaging is key in modern medicine. From magnetic resonance imaging (MRI) to microscopic imaging for blood cell detection, diagnostic medical imaging reveals vital insights into patient health. To pre... 详细信息
来源: 评论
Contrastive learning for Adapting Language Model to Sequential Recommendation  24
Contrastive Learning for Adapting Language Model to Sequenti...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Liang, Fei-Yao Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
With the explosive growth of information, recommendation systems have emerged to alleviate the problem of information overload. In order to improve the performance of recommendation systems, many existing methods intr... 详细信息
来源: 评论
The challenges of the nonlinear regime for physics-informed neural networks  24
The challenges of the nonlinear regime for physics-informed ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Andrea Bonfanti Giuseppe Bruno Cristina Cipriani BMW AG Digital Campus Munich Basque Center for Applied Mathematics University of the Basque Country BMW AG Digital Campus Munich Technical University of Munich Munich Center for Machine Learning Munich Data Science Institute
The Neural Tangent Kernel (NTK) viewpoint is widely employed to analyze the training dynamics of overparameterized Physics-Informed Neural Networks (PINNs). However, unlike the case of linear Partial Differential Equa...
来源: 评论
RecCoder: Reformulating Sequential Recommendation as Large Language Model-Based Code Completion  24
RecCoder: Reformulating Sequential Recommendation as Large L...
收藏 引用
24th IEEE International Conference on data Mining, ICDM 2024
作者: Lai, Kai-Huang Xi, Wu-Dong Xing, Xing-Xing Wan, Wei Wang, Chang-Dong Chen, Min Guizani, Mohsen School of Computer Science and Engineering Sun Yat-sen University Guangzhou China NetEase Games China UX Center NetEase Games Guangzhou China Guangdong Provincial Key Laboratory of Intellectual Property and Big Data Guangzhou China School of Computer Science and Engineering South China University of Technology Guangzhou China Pazhou Laboratory Guangzhou China Machine Learning Department Abu Dhabi United Arab Emirates
In the evolving landscape of sequential recommendation systems, the application of Large Language Models (LLMs) is increasingly prominent. However, current attempts typically utilize general-purpose LLMs, which presen... 详细信息
来源: 评论
CASSPR: Cross Attention Single Scan Place Recognition
CASSPR: Cross Attention Single Scan Place Recognition
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Yan Xia Mariia Gladkova Rui Wang Qianyun Li Uwe Stilla João F. Henriques Daniel Cremers Technical University of Munich Munich Center for Machine Learning (MCML) Visual Geometry Group University of Oxford Munich Data Science Institute Microsoft Zurich
Place recognition based on point clouds (LiDAR) is an important component for autonomous robots or self-driving vehicles. Current SOTA performance is achieved on accumulated LiDAR submaps using either point-based or v...
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Ai...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Tsangko, Iosif Triantafyllopoulos, Andreas Müller, Michael Schröter, Hendrik Schuller, Björn W. EIHW - Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany Technical University of Munich Germany MCML - Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom MDSI - Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a 'one-size-fits-all... 详细信息
来源: 评论
HERALD: A NATURAL LANGUAGE ANNOTATED LEAN 4 dataSET
arXiv
收藏 引用
arXiv 2024年
作者: Gao, Guoxiong Wang, Yutong Jiang, Jiedong Gao, Qi Qin, Zihan Xu, Tianyi Dong, Bin Peking University China National University of Singapore Singapore Center for Data Science Peking University China Beijing International Center for Mathematical Research The New Cornerstone Science Laboratory Peking University China Center for Machine Learning Research Peking University China
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for... 详细信息
来源: 评论
Ai-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management  22
Ai-Driven Automated Tool for Abdominal CT Body Composition A...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Nan, Xinyu He, Meng Chen, Zifan Dong, Bin Tang, Lei Zhang, Li Peking University Center for Data Science China Peking University Cancer Hospital and Institute Key Laboratory of Carcinogenesis and Translational Research Ministry of Education Department of Radiology Beijing China Peking University Beijing International Center for Mathematical Research (BICMR) Beijing China Peking University Center for Machine Learning Research Beijing China Peking University National Biomedical Imaging Center Beijing China
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong co... 详细信息
来源: 评论
Improving Generalization and Convergence by Enhancing Implicit Regularization
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Mingze Wang, Jinbo He, Haotian Wang, Zilin Huang, Guanhua Xiong, Feiyu Li, Zhiyu Weinan, E. Wu, Lei School of Mathematical Sciences Peking University China Center for Machine Learning Research Peking University China China AI for Science Institute China School of Data Science University of Science and Technology of China China ByteDance Research China
In this work, we propose an Implicit Regularization Enhancement (IRE) framework to accelerate the discovery of flat solutions in deep learning, thereby improving generalization and convergence. Specifically, IRE decou... 详细信息
来源: 评论
Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Bamberger, Stefan Heckel, Reinhard Krahmer, Felix Department of Mathematics Technical University of Munich Holsten Systems GmbH Germany Department of Computer Engineering Technical University of Munich Munich Center for Machine Learning Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Germany
We investigate to what extent it is possible to solve linear inverse problems with ReLu networks. Due to the scaling invariance arising from the linearity, an optimal reconstruction function f for such a problem is po... 详细信息
来源: 评论