Cervical cell segmentation is a significant task in medical image analysis and can be used for screening various cervical diseases. In recent years, substantial progress has been made in cervical cell segmentation tec...
详细信息
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequenc...
详细信息
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low *** this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician *** start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in *** also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the *** emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining *** also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable *** emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
Gradient nano-grained structure is frequently engineered into metallic materials,including Mg alloys,to achieve superior combination of strength and ***,the influence of this microstructural feature on aging precipita...
详细信息
Gradient nano-grained structure is frequently engineered into metallic materials,including Mg alloys,to achieve superior combination of strength and ***,the influence of this microstructural feature on aging precipitation behavior remains inadequately *** this study,the age-precipitation behavior of a gradient nano-grained Mg-Gd-Ag-Zr alloy prepared via ultrasonic severe surface rolling was *** result indicates that the aging precipitation behavior exhibits a depth-dependent variation within this *** the nano-grained surface layer,hierarchicalβnano-precipitates are predominant,while at greater depths,the precipitates consist ofβnanoparticles located at grain boundaries,along with intragranularβ′andγ″*** formation ofβnano-precipitates deviates from the conventional precipitation behavior observed in Mg-Gd-Ag alloys,and is attributed to the high density of defects induced by the surface nano-grained *** finding advances our understanding of the precipitation behavior in the alloys with heterogeneous microstructure.
Previous deep learning-based Network Intrusion Detection Systems (NIDS) require a sufficient number of labeled samples to train deep neural network models. However, in certain scenarios of the Internet of Things (IoT)...
详细信息
Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output *** works solve these binary...
详细信息
Multi-class classification can be solved by decomposing it into a set of binary classification problems according to some encoding rules,e.g.,one-vs-one,one-vs-rest,error-correcting output *** works solve these binary classification problems in the original feature space,while it might be suboptimal as different binary classification problems correspond to different positive and negative *** this paper,we propose to learn label-specific features for each decomposed binary classification problem to consider the specific characteristics containing in its positive and negative ***,to generate the label-specific features,clustering analysis is respectively conducted on the positive and negative examples in each decomposed binary data set to discover their inherent information and then label-specific features for one example are obtained by measuring the similarity between it and all cluster *** clearly validate the effectiveness of learning label-specific features for decomposition-based multi-class classification.
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined co...
详细信息
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined convergence time for the PEG,a PTNE seeking algorithm has been developed to facilitate collaboration among multiple pursuers for capturing the evader without the need for any global ***,it is theoretically proved that the prescribedtime convergence of the designed algorithm for achieving Nash equilibrium of ***,the effectiveness of the PTNE method was validated by numerical simulation results.A PEG consists of two groups of agents:evaders and *** pursuers aim to capture the evaders through cooperative efforts,while the evaders strive to evade *** is a classic noncooperative *** has attracted plenty of attention due to its wide application scenarios,such as smart grids[1],formation control[2],[3],and spacecraft rendezvous[4].It is noteworthy that most previous research on seeking the Nash equilibrium of the game,where no agent has an incentive to change its actions,has focused on asymptotic and exponential convergence[5]-[7].
Edge computing nodes undertake an increasing number of tasks with the rise of business ***,how to efficiently allocate large-scale and dynamic workloads to edge computing resources has become a critical *** study prop...
详细信息
Edge computing nodes undertake an increasing number of tasks with the rise of business ***,how to efficiently allocate large-scale and dynamic workloads to edge computing resources has become a critical *** study proposes an edge task scheduling approach based on an improved Double Deep Q Network(DQN),which is adopted to separate the calculations of target Q values and the selection of the action in two networks.A new reward function is designed,and a control unit is added to the experience replay unit of the *** management of experience data are also modified to fully utilize its value and improve learning *** learning agents usually learn from an ignorant state,which is *** such,this study proposes a novel particle swarm optimization algorithm with an improved fitness function,which can generate optimal solutions for task *** optimized solutions are provided for the agent to pre-train network parameters to obtain a better cognition *** proposed algorithm is compared with six other methods in simulation *** show that the proposed algorithm outperforms other benchmark methods regarding makespan.
This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
The telegrapher’s equations constitute a set of linear partial differential equations that establish a mathematical correspondence between the electrical current and voltage within transmission lines, taking into acc...
详细信息
暂无评论