咨询与建议

限定检索结果

文献类型

  • 351 篇 会议
  • 344 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 696 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 429 篇 工学
    • 336 篇 计算机科学与技术...
    • 272 篇 软件工程
    • 81 篇 信息与通信工程
    • 71 篇 生物工程
    • 48 篇 电气工程
    • 44 篇 控制科学与工程
    • 36 篇 生物医学工程(可授...
    • 27 篇 电子科学与技术(可...
    • 25 篇 光学工程
    • 24 篇 机械工程
    • 20 篇 化学工程与技术
    • 15 篇 动力工程及工程热...
    • 14 篇 交通运输工程
    • 12 篇 安全科学与工程
    • 11 篇 仪器科学与技术
    • 11 篇 建筑学
    • 11 篇 网络空间安全
  • 214 篇 理学
    • 106 篇 数学
    • 77 篇 生物学
    • 37 篇 物理学
    • 34 篇 统计学(可授理学、...
    • 24 篇 化学
    • 20 篇 系统科学
  • 122 篇 管理学
    • 71 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 20 篇 工商管理
  • 36 篇 医学
    • 30 篇 临床医学
    • 25 篇 基础医学(可授医学...
    • 21 篇 药学(可授医学、理...
  • 20 篇 法学
    • 15 篇 社会学
  • 9 篇 经济学
  • 9 篇 农学
  • 3 篇 文学
  • 2 篇 教育学
  • 1 篇 艺术学

主题

  • 28 篇 semantics
  • 23 篇 feature extracti...
  • 23 篇 training
  • 21 篇 machine learning
  • 20 篇 task analysis
  • 20 篇 computational mo...
  • 16 篇 deep learning
  • 16 篇 graph neural net...
  • 14 篇 memory managemen...
  • 12 篇 data models
  • 11 篇 neural networks
  • 10 篇 deep neural netw...
  • 10 篇 computer archite...
  • 9 篇 scalability
  • 9 篇 throughput
  • 9 篇 containers
  • 9 篇 federated learni...
  • 9 篇 forecasting
  • 9 篇 pathology
  • 8 篇 bandwidth

机构

  • 105 篇 national enginee...
  • 51 篇 school of comput...
  • 49 篇 school of cyber ...
  • 34 篇 national enginee...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 27 篇 cluster and grid...
  • 26 篇 hubei key labora...
  • 25 篇 huazhong univers...
  • 22 篇 national enginee...
  • 21 篇 zhejiang lab
  • 19 篇 school of comput...
  • 18 篇 peking universit...
  • 17 篇 national univers...
  • 17 篇 school of softwa...
  • 16 篇 national enginee...
  • 15 篇 school of inform...
  • 12 篇 department of el...
  • 12 篇 national enginee...
  • 12 篇 huazhong univers...

作者

  • 120 篇 hai jin
  • 119 篇 jin hai
  • 42 篇 xiaofei liao
  • 27 篇 liao xiaofei
  • 23 篇 hu shengshan
  • 21 篇 liu jun
  • 21 篇 haikun liu
  • 20 篇 long zheng
  • 16 篇 li chen
  • 16 篇 chen li
  • 16 篇 zhang leo yu
  • 16 篇 yu zhang
  • 16 篇 yu huang
  • 15 篇 zou deqing
  • 15 篇 deqing zou
  • 13 篇 jiang xiao
  • 13 篇 li minghui
  • 12 篇 gao zeyu
  • 12 篇 yang shusen
  • 12 篇 zhou ziqi

语言

  • 657 篇 英文
  • 34 篇 其他
  • 6 篇 中文
检索条件"机构=National Engineering Lab for Big Data Analytics"
696 条 记 录,以下是81-90 订阅
排序:
Self-supervised probabilistic models for exploring shape memory alloys
收藏 引用
npj Computational Materials 2024年 第1期10卷 1338-1347页
作者: Yiding Wang Tianqing Li Hongxiang Zong Xiangdong Ding Songhua Xu Jun Sun Turab Lookman State Key Laboratory for Mechanical Behavior of Materials Xi’an Jiaotong UniversityXi’an710049China National Engineering Laboratory for Big Data Analytics School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’an710049China AiMaterials Research LLC Santa FeNM87501USA
Recent advancements in machine learning(ML)have revolutionized the field of high-performance materials ***,developing robust ML models to decipher intricate structure-property relationships in materials remains challe... 详细信息
来源: 评论
Answering reachability queries with ordered label constraints over labeled graphs
收藏 引用
Frontiers of Computer Science 2024年 第1期18卷 105-117页
作者: Daoliang HE Pingpeng YUAN Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabCluster and Grid Computing LabSchool of Computer Science&TechnologyHuazhong University of Science and TechnologyWuhan 430074China
Reachability query plays a vital role in many graph analysis *** researches proposed many methods to efficiently answer reachability queries between vertex *** many real graphs are labeled graph,it highly demands labe... 详细信息
来源: 评论
MOMENTUM BENEFITS NON-IID FEDERATED LEARNING SIMPLY AND PROVABLY  12
MOMENTUM BENEFITS NON-IID FEDERATED LEARNING SIMPLY AND PROV...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Cheng, Ziheng Huang, Xinmeng Wu, Pengfei Yuan, Kun Peking University China University of Pennsylvania United States National Engineering Labratory for Big Data Analytics and Applications AI for Science Institute Beijing China
Federated learning is a powerful paradigm for large-scale machine learning, but it faces significant challenges due to unreliable network connections, slow communication, and substantial data heterogeneity across clie... 详细信息
来源: 评论
Renal Cell Carcinoma Detection and Subtyping with Minimal Point-Based Annotation in Whole-Slide Images  23rd
Renal Cell Carcinoma Detection and Subtyping with Minimal Po...
收藏 引用
23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Gao, Zeyu Puttapirat, Pargorn Shi, Jiangbo Li, Chen School of Computer Science and Technology Xian Jiaotong University XianShaanxi710049 China National Engineering Lab for Big Data Analytics Xian Jiaotong University XianShaanxi710049 China
Cancerous region detection and subtyping in whole-slide images (WSIs) are fundamental for renal cell carcinoma (RCC) diagnosis. The main challenge in the development of automated RCC diagnostic systems is the lack of ... 详细信息
来源: 评论
A survey on dynamic graph processing on GPUs: concepts, terminologies and systems
收藏 引用
Frontiers of Computer Science 2024年 第4期18卷 1-23页
作者: Hongru GAO Xiaofei LIAO Zhiyuan SHAO Kexin LI Jiajie CHEN Hai JIN National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China Zhejiang Lab Hangzhou 311121China
Graphs that are used to model real-world entities with vertices and relationships among entities with edges,have proven to be a powerful tool for describing real-world problems in *** most real-world scenarios,entitie... 详细信息
来源: 评论
ARCHER:a ReRAM-based accelerator for compressed recommendation systems
收藏 引用
Frontiers of Computer Science 2024年 第5期18卷 147-160页
作者: Xinyang SHEN Xiaofei LIAO Long ZHENG Yu HUANG Dan CHEN Hai JIN National Engineering Research Center for Big Data Technology and System Services Computing Technology and System LabClusters and Grid Computing LabSchool of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhan 430074China
Modern recommendation systems are widely used in modern data *** random and sparse embedding lookup operations are the main performance bottleneck for processing recommendation systems on traditional platforms as they... 详细信息
来源: 评论
Learning robust patient representations from multi-modal electronic health records: A supervised deep learning approach
Learning robust patient representations from multi-modal ele...
收藏 引用
2021 SIAM International Conference on data Mining, SDM 2021
作者: Zhang, Xianli Qian, Buyue Li, Yang Liu, Yang Chen, Xi Guan, Chong Li, Chen National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Shaanxi Xi’an710049 China School of Electronic and Information Engineering Xi’an Jiaotong University Shaanxi Xi’an710049 China Tencent Jarvis Lab. Shenzhen China
Predicting patients’ future outcomes by analyzing Electronic health records (EHRs) is a hot topic in machine learning. The key challenge in this area is how to transform high dimensional, redundant, and heterogeneous...
来源: 评论
LSTM based Soft-Sensor for Estimating Nitrate Concentration in Aquaponics pond  3
LSTM based Soft-Sensor for Estimating Nitrate Concentration ...
收藏 引用
3rd International Conference for Innovation in Technology, INOCON 2024
作者: Dharshan, A. Kumar, Purushottam Ravimaran, S. Srinivasulu Reddy, U. Saranathan College of Engineering Department of Artificial Intelligence and Data Science Trichy India National Institute of Technology Artificial Intelligence Machine Learning & Data Analytics Lab Trichy India National Institute of Technology Department of Computer Applications Machine Learning & Data Analytics Lab Trichy India
In the field of aquaponics, where fish and plants coexist in a symbiotic environment, closely monitoring nitrate levels in the water is crucial due to their profound impact on aquatic and plant well-being. Traditional... 详细信息
来源: 评论
Snapshot boosting: a fast ensemble framework for deep neural networks
收藏 引用
Science China(Information Sciences) 2020年 第1期63卷 77-88页
作者: Wentao ZHANG Jiawei JIANG Yingxia SHAO Bin CUI Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications Department of Computer Science Beijing Key Lab of Intelligent Telecommunications Software and Multimedia School of Computer ScienceBeijing University of Posts and Telecommunications Key Lab of High Confidence Software Technologies Department of Computer SciencePeking University
Boosting has been proven to be effective in improving the generalization of machine learning models in many fields. It is capable of getting high-diversity base learners and getting an accurate ensemble model by combi... 详细信息
来源: 评论
Differentially Private Deep Learning with Iterative Gradient Descent Optimization
收藏 引用
ACM/IMS Transactions on data Science 2021年 第4期2卷 1–27页
作者: Ding, Xiaofeng Chen, Lin Zhou, Pan Jiang, Wenbin Jin, Hai National Engineering Research Center for Big Data Technology and System Lab Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan430074 China
Deep learning has achieved great success in various areas and its success is closely linked to the availability of massive data. But in general, a large dataset could include sensitive data and therefore the model sho... 详细信息
来源: 评论