咨询与建议

限定检索结果

文献类型

  • 318 篇 会议
  • 282 篇 期刊文献

馆藏范围

  • 600 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 369 篇 工学
    • 304 篇 计算机科学与技术...
    • 241 篇 软件工程
    • 66 篇 信息与通信工程
    • 52 篇 生物工程
    • 49 篇 电气工程
    • 42 篇 控制科学与工程
    • 29 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 19 篇 化学工程与技术
    • 18 篇 生物医学工程(可授...
    • 17 篇 动力工程及工程热...
    • 17 篇 交通运输工程
    • 16 篇 光学工程
    • 15 篇 网络空间安全
    • 10 篇 仪器科学与技术
    • 9 篇 材料科学与工程(可...
  • 177 篇 理学
    • 91 篇 数学
    • 59 篇 生物学
    • 26 篇 物理学
    • 24 篇 统计学(可授理学、...
    • 22 篇 化学
    • 15 篇 系统科学
  • 107 篇 管理学
    • 60 篇 管理科学与工程(可...
    • 49 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 医学
    • 12 篇 基础医学(可授医学...
    • 11 篇 临床医学
    • 8 篇 公共卫生与预防医...
  • 11 篇 法学
    • 6 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 2 篇 文学
  • 1 篇 教育学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 22 篇 training
  • 19 篇 computational mo...
  • 19 篇 semantics
  • 19 篇 feature extracti...
  • 13 篇 deep learning
  • 13 篇 task analysis
  • 13 篇 memory managemen...
  • 13 篇 machine learning
  • 12 篇 accuracy
  • 12 篇 data models
  • 10 篇 computer archite...
  • 10 篇 optimization
  • 10 篇 contrastive lear...
  • 10 篇 predictive model...
  • 10 篇 codes
  • 9 篇 scalability
  • 9 篇 deep neural netw...
  • 9 篇 robustness
  • 8 篇 parallel process...
  • 8 篇 reinforcement le...

机构

  • 134 篇 national enginee...
  • 100 篇 national enginee...
  • 74 篇 college of compu...
  • 61 篇 school of comput...
  • 51 篇 school of cyber ...
  • 37 篇 national enginee...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 28 篇 shenzhen univers...
  • 27 篇 cluster and grid...
  • 26 篇 huazhong univers...
  • 26 篇 hubei key labora...
  • 20 篇 school of softwa...
  • 18 篇 shenzhen institu...
  • 18 篇 zhejiang lab
  • 16 篇 school of inform...
  • 15 篇 guangdong provin...
  • 12 篇 national enginee...
  • 12 篇 national enginee...
  • 12 篇 huazhong univers...

作者

  • 131 篇 jin hai
  • 126 篇 hai jin
  • 43 篇 xiaofei liao
  • 40 篇 shen linlin
  • 28 篇 liao xiaofei
  • 24 篇 li jianqiang
  • 23 篇 hu shengshan
  • 22 篇 long zheng
  • 21 篇 haikun liu
  • 18 篇 linlin shen
  • 17 篇 zou deqing
  • 16 篇 zhang leo yu
  • 16 篇 yu zhang
  • 15 篇 deqing zou
  • 15 篇 jianqiang li
  • 15 篇 yu huang
  • 14 篇 liu haikun
  • 13 篇 jiang xiao
  • 13 篇 li minghui
  • 12 篇 wan yao

语言

  • 549 篇 英文
  • 47 篇 其他
  • 5 篇 中文
检索条件"机构=National Engineering Lab for Big Data System Computing Technology"
600 条 记 录,以下是231-240 订阅
排序:
Targeted Pareto Optimization for Subset Selection With Monotone Objective Function and Cardinality Constraint
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年 1-1页
作者: Shang, Ke Wu, Guotong Pang, Lie Meng Ishibuchi, Hisao National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Subset selection, a fundamental problem in various domains, is to choose a subset of elements from a large candidate set under a given objective or multiple objectives. Pareto optimization for subset selection (POSS) ... 详细信息
来源: 评论
QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows
QoS-Aware and Cost-Efficient Dynamic Resource Allocation for...
收藏 引用
International Symposium on Parallel and Distributed Processing (IPDPS)
作者: Hao Wu Junxiao Deng Hao Fan Shadi Ibrahim Song Wu Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology China Inria Univ. Rennes CNRS IRISA France
Machine Learning (ML) workflows are increasingly deployed on serverless computing platforms to benefit from their elasticity and fine-grain pricing. Proper resource allocation is crucial to achieve fast and cost-effic...
来源: 评论
SMOG: Accelerating Subgraph Matching on GPUs
SMOG: Accelerating Subgraph Matching on GPUs
收藏 引用
IEEE Conference on High Performance Extreme computing (HPEC)
作者: Zhibin Wang Ziheng Meng Xue Li Xi Lin Long Zheng Chen Tian Sheng Zhong State Key Laboratory for Novel Software Technology Nanjing University Alibaba Group“ National Engineering Research Center for Big Data Technology and System/ Services Computing Technology and System Lab/Cluster and Grid Computing Laboratory Huazhong University of Science and Technology Zhejiang Lab
Subgraph matching is a crucial problem in graph theory with diverse applications in fields, such as bioinformatics, social networks and recommendation systems. Accelerating subgraph matching can be greatly facilitated...
来源: 评论
Personalized Federated Learning with Enhanced Implicit Generalization
Personalized Federated Learning with Enhanced Implicit Gener...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Heping Liu Songbai Liu Junkai Ji Qiuzhen Lin Jianyong Chen Kay Chen Tan College of Computer Science and Software Engineering Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Computing The Hong Kong Polytechnic University
Integrating personalization into federated learning is crucial for addressing data heterogeneity and surpassing the limitations of a single aggregated model. Personalized federated learning excels at capturing inter-c... 详细信息
来源: 评论
Node Importance Estimation Leveraging LLMs for Semantic Augmentation in Knowledge Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Xinyu Zhang, Tianyu Hou, Chengbin Wang, Jinbao Xue, Jianye Lv, Hairong School of Computing and Artificial Intelligence Fuyao University of Science and Technology Fuzhou China Department of Automation Tsinghua University Beijing China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China
Node Importance Estimation (NIE) is a task that quantifies the importance of node in a graph. Recent research has investigated to exploit various information from Knowledge Graphs (KGs) to estimate node importance sco... 详细信息
来源: 评论
ECLIPSE: Expunging Clean-label Indiscriminate Poisons via Sparse Diffusion Purification
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Xianlong Hu, Shengshan Zhang, Yechao Zhou, Ziqi Zhang, Leo Yu Xu, Peng Wan, Wei Jin, Hai National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Cluster and Grid Computing Lab China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan430074 China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China School of Information and Communication Technology Griffith University SouthportQLD4215 Australia
Clean-label indiscriminate poisoning attacks add invisible perturbations to correctly labeled training images, thus dramatically reducing the generalization capability of the victim models. Recently, defense mechanism... 详细信息
来源: 评论
A General Offloading Approach for Near-DRAM Processing-In-Memory Architectures
A General Offloading Approach for Near-DRAM Processing-In-Me...
收藏 引用
International Symposium on Parallel and Distributed Processing (IPDPS)
作者: Dan Chen Hai Jin Long Zheng Yu Huang Pengcheng Yao Chuangyi Gui Qinggang Wang Haifeng Liu Haiheng He Xiaofei Liao Ran Zheng National Engineering Research Center for Big Data Technology and System/Services Computing Technology and System Lab/Clusters and Grid Computing Lab Huazhong University of Science and Technology China
Processing-in-memory (PIM) is promising to solve the well-known data movement challenge by performing in-situ computations near the data. Leveraging PIM features is pretty profitable to boost the energy efficiency of ... 详细信息
来源: 评论
OblivTime: Oblivious and Efficient Interval Skyline Query Processing Over Encrypted Time-Series data
收藏 引用
IEEE Transactions on Services computing 2025年
作者: Ouyang, Huajie Zheng, Yifeng Wang, Songlei Hua, Zhongyun Harbin Institute of Technology School of Computer Science and Technology Guangdong Shenzhen518055 China The Hong Kong Polytechnic University Department of Electrical and Electronic Engineering Hong Kong Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen518055 China
Time-series data is prevalent in many applications like smart homes, smart grids, and healthcare. And it is now increasingly common to store and query time-series data in the cloud. Despite the benefits, data privacy ... 详细信息
来源: 评论
StreamFP: Learnable Fingerprint-guided data Selection for Efficient Stream Learning
arXiv
收藏 引用
arXiv 2024年
作者: Shi, Tongjun Zhang, Shuhao Chen, Binbin He, Bingsheng National Engineering Research Center for Big DataTechnology and System Services Computing Technology and System Lab Cluster Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Singapore University of Technology and Design Singapore National University of Singapore Singapore
Stream Learning (SL) requires models that can quickly adapt to continuously evolving data, posing significant challenges in both computational efficiency and learning accuracy. Effective data selection is critical in ... 详细信息
来源: 评论
Securely Fine-tuning Pre-trained Encoders Against Adversarial Examples
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Ziqi Li, Minghui Liu, Wei Hu, Shengshan Zhang, Yechao Wan, Wei Xue, Lulu Zhang, Leo Yu Yao, Dezhong Jin, Hai National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab. China Cluster and Grid Computing Lab. China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Computer Science and Technology Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Information and Communication Technology Griffith University Australia
With the evolution of self-supervised learning, the pre-training paradigm has emerged as a predominant solution within the deep learning landscape. Model providers furnish pre-trained encoders designed to function as ... 详细信息
来源: 评论