咨询与建议

限定检索结果

文献类型

  • 101 篇 期刊文献
  • 78 篇 会议

馆藏范围

  • 179 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 114 篇 工学
    • 75 篇 计算机科学与技术...
    • 62 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 15 篇 电气工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 化学工程与技术
    • 10 篇 控制科学与工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 材料科学与工程(可...
    • 6 篇 机械工程
    • 5 篇 仪器科学与技术
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 安全科学与工程
  • 85 篇 理学
    • 42 篇 数学
    • 22 篇 物理学
    • 19 篇 生物学
    • 16 篇 统计学(可授理学、...
    • 11 篇 化学
  • 33 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
    • 9 篇 工商管理
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 8 篇 法学
    • 7 篇 社会学
  • 7 篇 医学
    • 5 篇 公共卫生与预防医...
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
  • 4 篇 农学
    • 4 篇 作物学
  • 2 篇 教育学
  • 2 篇 文学

主题

  • 5 篇 deep learning
  • 5 篇 forecasting
  • 4 篇 memory managemen...
  • 4 篇 feature extracti...
  • 3 篇 deep neural netw...
  • 3 篇 costs
  • 3 篇 machine learning
  • 3 篇 transforms
  • 3 篇 clustering algor...
  • 3 篇 data visualizati...
  • 3 篇 cryptography
  • 3 篇 transportation
  • 2 篇 parallel process...
  • 2 篇 representation l...
  • 2 篇 distillation
  • 2 篇 data centers
  • 2 篇 motion planning
  • 2 篇 anomaly detectio...
  • 2 篇 planning
  • 2 篇 network topology

机构

  • 16 篇 peng cheng labor...
  • 10 篇 peking universit...
  • 9 篇 national enginee...
  • 8 篇 national enginee...
  • 7 篇 school of comput...
  • 7 篇 college of compu...
  • 6 篇 zte corporation
  • 6 篇 inner mongolia e...
  • 6 篇 peking universit...
  • 6 篇 inner mongolia k...
  • 5 篇 college of compu...
  • 5 篇 school of comput...
  • 5 篇 national enginee...
  • 5 篇 shenyang branch ...
  • 5 篇 college of mecha...
  • 5 篇 national enginee...
  • 5 篇 liaoning provinc...
  • 5 篇 school of inform...
  • 5 篇 beijing normal u...
  • 5 篇 fujian provincia...

作者

  • 11 篇 bin cui
  • 10 篇 tong yang
  • 9 篇 yang tong
  • 9 篇 cui bin
  • 8 篇 jian-tao zhou
  • 6 篇 wei zeng
  • 6 篇 chang kuo-chi
  • 6 篇 jianxiao wang
  • 5 篇 zhao yikai
  • 5 篇 yuhan wu
  • 5 篇 shuai yuan
  • 5 篇 yuan xiaoru
  • 5 篇 yikai zhao
  • 5 篇 wu yuhan
  • 4 篇 deng yongqiang
  • 4 篇 xiong yi
  • 4 篇 guo jiarui
  • 4 篇 zheng zhong
  • 4 篇 yang xinquan
  • 4 篇 li xuguang

语言

  • 168 篇 英文
  • 9 篇 其他
  • 3 篇 中文
检索条件"机构=National Engineering Laboratory for Big Data Algorithm and Analysis Technology"
179 条 记 录,以下是151-160 订阅
排序:
Neural Multi-Objective Combinatorial Optimization with Diversity Enhancement
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Jinbiao Zhang, Zizhen Cao, Zhiguang Wu, Yaoxin Ma, Yining Ye, Te Wang, Jiahai School of Computer Science and Engineering Sun Yat-sen University China School of Computing and Information Systems Singapore Management University Singapore Department of Industrial Engineering & Innovation Sciences Eindhoven University of Technology Netherlands Department of Industrial Systems Engineering & Management National University of Singapore Singapore Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Sun Yat-sen University China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Most of existing neural methods for multi-objective combinatorial optimization (MOCO) problems solely rely on decomposition, which often leads to repetitive solutions for the respective subproblems, thus a limited Par... 详细信息
来源: 评论
Robust frequent directions with application in online learning
arXiv
收藏 引用
arXiv 2017年
作者: Luo, Luo Chen, Cheng Zhang, Zhihua Li, Wu-Jun Zhang, Tong Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China National Engineering Lab for Big Data Analysis and Applications School of Mathematical Sciences Peking University 5 Yiheyuan Road Beijing100871 China National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology Nanjing University 163 Xianlin Avenue Nanjing210023 China Computer Science & Mathematics Hong Kong University of Science and Technology Hong Kong
The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient ma... 详细信息
来源: 评论
iGniter: Interference-Aware GPU Resource Provisioning for Predictable DNN Inference in the Cloud
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Fei Xu, Jianian Chen, Jiabin Chen, Li Shang, Ruitao Zhou, Zhi Liu, Fangming The Shanghai Key Laboratory of Multidimensional Information Processing School of Computer Science and Technology East China Normal University 3663 N. Zhongshan Road Shanghai200062 China The School of Computing and Informatics University of Louisiana at Lafayette 301 East Lewis Street LafayetteLA70504 United States The Guangdong Key Laboratory of Big Data Analysis and Processing School of Computer Science and Engineering Sun Yat-sen University 132 E. Waihuan Road Guangzhou510006 China The National Engineering Research Center for Big Data Technology and System The Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology 1037 Luoyu Road Wuhan430074 China
GPUs are essential to accelerating the latency-sensitive deep neural network (DNN) inference workloads in cloud datacenters. To fully utilize GPU resources, spatial sharing of GPUs among co-located DNN inference workl... 详细信息
来源: 评论
Model-enhanced vector index  23
Model-enhanced vector index
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Hailin Zhang Yujing Wang Qi Chen Ruiheng Chang Ting Zhang Ziming Miao Yingyan Hou Yang Ding Xupeng Miao Haonan Wang Bochen Pang Yuefeng Zhan Hao Sun Weiwei Deng Qi Zhang Fan Yang Xing Xie Mao Yang Bin Cui School of Computer Science & Key Lab of High Confidence Software Technologies Peking University and Microsoft Microsoft Microsoft and Aerospace Information Research Institute & Key Laboratory of Target Cognition and Application Technology Chinese Academy of Sciences Microsoft and Institute of Information Engineering Chinese Academy of Sciences Carnegie Mellon University National University of Singapore School of Computer Science & Key Lab of High Confidence Software Technologies Peking University and National Engineering Laboratory for Big Data Analysis and Applications Peking University
Embedding-based retrieval methods construct vector indices to search for document representations that are most similar to the query representations. They are widely used in document retrieval due to low latency and d...
来源: 评论
How Does Knowledge Graph Embedding Extrapolate to Unseen data: A Semantic Evidence View
arXiv
收藏 引用
arXiv 2021年
作者: Li, Ren Cao, Yanan Zhu, Qiannan Bi, Guanqun Fang, Fang Liu, Yi Li, Qian Institute of Information Engineering Chinese Academy of Sciences China School of Cyber Security University of Chinese Academy of Sciences China Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China National Computer Network Emergency Response Technical Team Coordination Center of China China University of Technology Sydney Australia
Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t... 详细信息
来源: 评论
Cross-domain Human Parsing via Adversarial Feature and Label Adaptation
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Si Sun, Yao Zhu, Defa Ren, Guanghui Chen, Yu Feng, Jiashi Han, Jizhong Institute of Information Engineering Chinese Academy of Sciences *** Department of Ece National University of Singapore Jiangsu Key Laboratory of Big Data Analysis Technology/B-DAT Nanjing University of Information Science and Technology Collab. Innov. Ctr. of Atmosph. Environ. and Equip. Technol. Nanjing Univ. of Info. Sci. and Technol. Nanjing China
Human parsing has been extensively studied recently (Yamaguchi et al. 2012;Xia et al. 2017) due to its wide applications in many important scenarios. Mainstream fashion parsing models (i.e., parsers) focus on parsing ... 详细信息
来源: 评论
A Wavelet-CNN-LSTM Model for Tailings Pond Risk Prediction
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Jun Li, Qing Sun, Yixuan Wang, Wei Li, Linchao Wang, Xuwei Jia, Shengyao Tong, Renyuan National and Local Joint Engineering research center for Disaster Monitoring Technologies and Instruments China Jiliang University Hangzhou310051 China Zhejiang Provincial Key Laboratory of Intelligent Manufacturing Quality Big Data Traceability Analysis and Application China Jiliang University Hangzhou310051 China Zhejiang PeckerAI Technology. Ltd Hangzhou310018 China College of Computer Science and Technology Zhejiang University Hangzhou310027 China
Tailings ponds are places for storing industrial waste. The saturation line is the key factor of quantifying the safety of tailings pond. Existing saturation line time-series prediction methods are mainly based on sta... 详细信息
来源: 评论
Model-assisted inference for covariate-specific treatment effects with high-dimensional data
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Peng Tan, Zhiqiang Hu, Wenjie Zhou, Xiao-Hua Beijing International Center for Mathematical Research Peking University Beijing100871 China Department of Statistics Rutgers University 110 Frelinghuysen Road PiscatawayNJ08854 United States Department of Probability and Statistics Peking University Beijing100871 China Department of Biostatistics Beijing International Center for Mathematical Research National Engineering Laboratory of Big Data Analysis and Applied Technology Peking University Beijing100871 China
Covariate-specific treatment effects (CSTEs) represent heterogeneous treatment effects across subpopulations defined by certain selected covariates. In this article, we consider marginal structural models where CSTEs ... 详细信息
来源: 评论
Hierarchical Attention Feature Fusion and Refinement Network for Point Cloud Upsampling
Hierarchical Attention Feature Fusion and Refinement Network...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yaori Zhang Shujin Lin Fan Zhou Ruomei Wang National Engineering Research Center of Digital Life School of Computer Science and Engineering Guangdong Provincial Science and Technology Collaborative Innovation Center for Culture and Tourism Sun Yat-sen University Guangzhou China School of Communication and Design Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion Guangdong Provincial Science and Technology Collaborative Innovation Center for Culture and Tourism Sun Yat-sen University Guangzhou China Guangdong Provincial Science and Technology Collaborative Innovation Center for Culture and Tourism National Engineering Research Center of Digital Life School of Computer Science and Engineering Sun Yat-sen University Guangzhou China National Engineering Research Center of Digital Life School of Computer Science and Engineering Sun Yat-sen University Guangzhou China
This paper presents a novel hierarchical attention feature fusion and refinement network designed to address challenges in existing deep learning based point cloud upsampling methods. The network combines self-attenti... 详细信息
来源: 评论
COVID-19大流行期间流感活动呈“断崖式”下降——佩戴口罩、人员流动变化及SARS-CoV-2干扰的作用
收藏 引用
engineering 2023年 第2期21卷 195-202,M0008页
作者: 韩莎莎 张婷 吕岩 赖圣杰 戴佩希 郑建东 杨维中 周晓华 冯录召 Beijing International Center for Mathematical Research Peking UniversityBeijing 100871China Harvard Medical School Harvard UniversityBostonMA 02115USA School of Population Medicine and Public Health Chinese Academy of Medical Sciences&Peking Union Medical CollegeBeijing 100730China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijing 100871China WorldPop School of Geography and Environmental ScienceUniversity of SouthamptonSouthampton SO171BJUK Division for Infectious Diseases Chinese Center for Disease Control and PreventionBeijing 102206China Department of Epidemiology and Biostatistics School of Public HealthPeking UniversityBeijing 100871China National Engineering Laboratory of Big Data Analysis and Applied Technology Peking UniversityBeijing 100871China
一般情况下,每年冬季是季节性流感高发季节,但在当前2019冠状病毒病(COVID-19)大流行期间,全球季节性流感活动呈“断崖式”下降。为应对即将到来的流感季节,亟需弄清这种前所未有的流感低水平流行的原因。本文中,我们探索了一种国家特... 详细信息
来源: 评论