咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 29 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 6 篇 生物工程
    • 4 篇 化学工程与技术
    • 3 篇 光学工程
    • 2 篇 机械工程
    • 2 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 材料科学与工程(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
  • 26 篇 理学
    • 9 篇 数学
    • 8 篇 生物学
    • 5 篇 化学
    • 4 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 地理学
    • 1 篇 大气科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 semantics
  • 3 篇 graph neural net...
  • 3 篇 forecasting
  • 2 篇 object detection
  • 2 篇 deep learning
  • 2 篇 annotations
  • 2 篇 benchmarking
  • 2 篇 extraction
  • 2 篇 pathology
  • 1 篇 internet of thin...
  • 1 篇 covid-19
  • 1 篇 learning systems
  • 1 篇 nonconvex square...
  • 1 篇 computer aided d...
  • 1 篇 cancer
  • 1 篇 textbooks
  • 1 篇 distillation
  • 1 篇 visual analytics
  • 1 篇 screening design
  • 1 篇 cyberattack

机构

  • 6 篇 lenovo research
  • 5 篇 school of comput...
  • 4 篇 leeds institute ...
  • 4 篇 center for psych...
  • 4 篇 department of in...
  • 4 篇 institute for pa...
  • 4 篇 department of st...
  • 4 篇 university of pi...
  • 4 篇 arnie charbonnea...
  • 4 篇 ilsbio llc bioba...
  • 4 篇 department of mo...
  • 4 篇 department of bi...
  • 4 篇 faculty of biosc...
  • 4 篇 osaka internatio...
  • 4 篇 tri-institutiona...
  • 4 篇 research departm...
  • 4 篇 department of ve...
  • 4 篇 royal stoke univ...
  • 4 篇 biomedical engin...
  • 4 篇 department of ex...

作者

  • 12 篇 liu jun
  • 8 篇 zhang lingling
  • 6 篇 zhao tianzhe
  • 5 篇 lin qika
  • 5 篇 pan yudai
  • 4 篇 yang shusen
  • 4 篇 wang qianying
  • 4 篇 zheng qinghua
  • 4 篇 tian feng
  • 4 篇 xu fangzhi
  • 3 篇 xu zongben
  • 3 篇 li xunkai
  • 3 篇 li chen
  • 3 篇 chen li
  • 3 篇 chen ping
  • 3 篇 su daohan
  • 3 篇 wang guoren
  • 3 篇 wu zhengyu
  • 3 篇 wu yaqiang
  • 3 篇 shusen yang

语言

  • 50 篇 英文
  • 4 篇 其他
检索条件"机构=National Engineering Laboratory for Big Data Algorithms and Analytics Technology"
54 条 记 录,以下是1-10 订阅
排序:
LightDiC: A Simple yet Effective Approach for Large-scale Digraph Representation Learning  50th
LightDiC: A Simple yet Effective Approach for Large-scale Di...
收藏 引用
50th International Conference on Very Large data Bases, VLDB 2024
作者: Li, Xunkai Liao, Meihao Wu, Zhengyu Su, Daohan Zhang, Wentao Li, Rong-Hua Wang, Guoren Beijing Institute of Technology China Peking University National Engineering Laboratory for Big Data Analytics and Applications China
Most existing graph neural networks (GNNs) are limited to undirected graphs, whose restricted scope of the captured relational information hinders their expressive capabilities and deployment. Compared with undirected... 详细信息
来源: 评论
Rethinking Node-wise Propagation for Large-scale Graph Learning  24
Rethinking Node-wise Propagation for Large-scale Graph Learn...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Li, Xunkai Ma, Jingyuan Wu, Zhengyu Su, Daohan Zhang, Wentao Li, Rong-Hua Wang, Guoren Beijing Institute of Technology Beijing China Peking University National Engineering Laboratory for Big Data Analytics and Applications Beijing China
Scalable graph neural networks (GNNs) have emerged as a promising technique, which exhibits superior predictive performance and high running efficiency across numerous large-scale graph-based web applications. However... 详细信息
来源: 评论
A Symbolic Rule Integration Framework with Logic Transformer for Inductive Relation Prediction  24
A Symbolic Rule Integration Framework with Logic Transformer...
收藏 引用
33rd ACM Web Conference, WWW 2024
作者: Pan, Yudai Liu, Jun Zhao, Tianzhe Zhang, Lingling Lin, Yun Dong, Jin Song School of Computer Science and Technology Xi'an Jiaotong University Shaanxi Xi'an China National Engineering Lab for Big Data Analytics Xi'an Jiaotong University Shaanxi Xi'an China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi'an Jiaotong University Shaanxi Xi'an China Shanghai Jiao Tong University Shanghai China National University of Singapore Singapore Singapore
Relation prediction in knowledge graphs (KGs) aims at predicting missing relations in incomplete triples, whereas the dominant paradigm by KG embeddings has a limitation to predict the relation between unseen entities... 详细信息
来源: 评论
Inductive Relation Prediction with Logical Reasoning Using Contrastive Representations
Inductive Relation Prediction with Logical Reasoning Using C...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Pan, Yudai Liu, Jun Zhang, Lingling Zhao, Tianzhe Lin, Qika Hu, Xin Wang, Qianying School of Computer Science and Technology Xi'an Jiaotong University China National Engineering Lab for Big Data Analytics China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering China Lenovo Research Beijing China
Relation prediction in knowledge graphs (KGs) aims at predicting missing relations in incomplete triples, whereas the dominant embedding paradigm has a restriction on handling unseen entities during testing. In the re... 详细信息
来源: 评论
Rethinking Node-wise Propagation for Large-scale Graph Learning
arXiv
收藏 引用
arXiv 2024年
作者: Li, Xunkai Su, Daohan Ma, Jingyuan Zhang, Wentao Wu, Zhengyu Li, Rong-Hua Wang, Guoren Beijing Institute of Technology Beijing China Peking University National Engineering Laboratory for Big Data Analytics and Applications Beijing China
Scalable graph neural networks (GNNs) have emerged as a promising technique, which exhibits superior predictive performance and high running efficiency across numerous large-scale graph-based web applications. However... 详细信息
来源: 评论
MatchPrompt: Prompt-based Open Relation Extraction with Semantic Consistency Guided Clustering
MatchPrompt: Prompt-based Open Relation Extraction with Sema...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Wang, Jiaxin Zhang, Lingling Liu, Jun Liang, Xi Zhong, Yujie Wu, Yaqiang Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering School of Computer Science and Technology Xi'an Jiaotong University China National Engineering Lab for Big Data Analytics Xi'an Jiaotong University China Lenovo Research Beijing China
Relation clustering is a general approach for open relation extraction (OpenRE). Current methods have two major problems. One is that their good performance relies on large amounts of labeled and pre-defined relationa... 详细信息
来源: 评论
Protein Structure Prediction Using A New Optimization-Based Evolutionary and Explainable Artificial Intelligence Approach
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年 第3期29卷 1-1页
作者: Hong, Jun Zhan, Zhi-Hui He, Langchong Xu, Zongben Zhang, Jun School of Computer Science and Engineering South China University of Technology Guangzhou P. R. China Health Science Center School of Pharmacy Xi’an Jiaotong University Xi’an P. R. China National Engineering Laboratory for Big Data Analytics Xi’an Jiaotong University Xi’an P. R. China College of Artificial Intelligence Nankai University Tianjin P. R. China
Protein structure prediction (PSP) is an important scientific problem because it helps humans to understand how proteins perform their biological functions. This paper models the PSP problem as a multi-objective optim... 详细信息
来源: 评论
Unlabeled data driven cost-sensitive inverse projection sparse representation-based classification with 1/2 regularization
收藏 引用
Science China(Information Sciences) 2022年 第8期65卷 39-56页
作者: Xiaohui YANG Zheng WANG Jian SUN Zongben XU Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms School of Mathematics and StatisticsHenan University National Engineering Laboratory for Big Data Analytics School of Mathematics and StatisticsXi'an Jiaotong University
Sparse representation-based classification(SRC) has been widely used because it just relies on simple linear regression ideas to do classification, and it does not need learning. However, the performance of SRC is lim... 详细信息
来源: 评论
Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention
arXiv
收藏 引用
arXiv 2024年
作者: An, Wenbin Tian, Feng Leng, Sicong Nie, Jiahao Lin, Haonan Wang, Qianying Chen, Ping Zhang, Xiaoqin Lu, Shijian Xi’an Jiaotong University China National Engineering Laboratory for Big Data Analytics China Nanyang Technological University Singapore Lenovo Research University of Massachusetts Boston United States Zhejiang University of Technology China
Despite great success across various multimodal tasks, Large Vision-Language Models (LVLMs) often encounter object hallucinations with generated textual responses being inconsistent with the actual objects in images. ... 详细信息
来源: 评论
Learning from Semi-Factuals: A Debiased and Semantic-Aware Framework for Generalized Relation Discovery
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Jiaxin Zhang, Lingling Liu, Jun Guo, Tianlin Wu, Wenjun The School of Computer Science and Technology Xi’an Jiaotong University Shaanxi Xi’an710049 China The Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University Shaanxi Xi’an710049 China National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Shaanxi Xi’an710049 China
We introduce a novel task, called Generalized Relation Discovery (GRD), for open-world relation extraction. GRD aims to identify unlabeled instances in existing pre-defined relations or discover novel relations by ass... 详细信息
来源: 评论