咨询与建议

限定检索结果

文献类型

  • 473 篇 期刊文献
  • 319 篇 会议

馆藏范围

  • 792 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 576 篇 工学
    • 315 篇 计算机科学与技术...
    • 273 篇 软件工程
    • 108 篇 信息与通信工程
    • 106 篇 生物工程
    • 83 篇 交通运输工程
    • 67 篇 光学工程
    • 62 篇 电气工程
    • 60 篇 生物医学工程(可授...
    • 56 篇 控制科学与工程
    • 56 篇 化学工程与技术
    • 48 篇 机械工程
    • 41 篇 电子科学与技术(可...
    • 38 篇 建筑学
    • 37 篇 材料科学与工程(可...
    • 36 篇 环境科学与工程(可...
    • 31 篇 土木工程
    • 27 篇 冶金工程
    • 23 篇 仪器科学与技术
  • 361 篇 理学
    • 181 篇 数学
    • 112 篇 生物学
    • 93 篇 物理学
    • 64 篇 统计学(可授理学、...
    • 53 篇 化学
    • 22 篇 系统科学
  • 148 篇 管理学
    • 101 篇 管理科学与工程(可...
    • 52 篇 图书情报与档案管...
    • 51 篇 工商管理
  • 35 篇 医学
    • 30 篇 临床医学
  • 29 篇 法学
    • 27 篇 社会学
  • 26 篇 农学
  • 25 篇 经济学
    • 25 篇 应用经济学
  • 10 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 19 篇 deep learning
  • 14 篇 forecasting
  • 13 篇 feature extracti...
  • 12 篇 convolution
  • 11 篇 life cycle
  • 9 篇 neural networks
  • 9 篇 semantics
  • 9 篇 convolutional ne...
  • 8 篇 machine learning
  • 8 篇 transportation
  • 7 篇 covid-19
  • 7 篇 semantic segment...
  • 7 篇 image segmentati...
  • 7 篇 optimization
  • 6 篇 reinforcement le...
  • 6 篇 three-dimensiona...
  • 6 篇 self-supervised ...
  • 6 篇 graph neural net...
  • 6 篇 computational mo...
  • 6 篇 costs

机构

  • 46 篇 national enginee...
  • 46 篇 school of transp...
  • 39 篇 national enginee...
  • 30 篇 national enginee...
  • 23 篇 national enginee...
  • 21 篇 henan key labora...
  • 20 篇 school of comput...
  • 20 篇 peng cheng labor...
  • 19 篇 national enginee...
  • 17 篇 school of comput...
  • 15 篇 national enginee...
  • 14 篇 national enginee...
  • 14 篇 school of comput...
  • 14 篇 national and loc...
  • 13 篇 henan engineerin...
  • 13 篇 school of comput...
  • 13 篇 national united ...
  • 12 篇 engineering rese...
  • 11 篇 national enginee...
  • 11 篇 school of transp...

作者

  • 45 篇 xia yong
  • 45 篇 zhang yanning
  • 20 篇 wang peng
  • 19 篇 li tianrui
  • 14 篇 xie yutong
  • 13 篇 liu yugang
  • 13 篇 chen geng
  • 12 篇 xi xiaoli
  • 11 篇 chen enhong
  • 11 篇 tian chunwei
  • 11 篇 yang hongtai
  • 11 篇 bin cui
  • 10 篇 liao zehui
  • 10 篇 tong yang
  • 10 篇 yanning zhang
  • 10 篇 sun zhanbo
  • 10 篇 zheng fangfang
  • 10 篇 gong xianzheng
  • 10 篇 zhang jianpeng
  • 10 篇 liu yu

语言

  • 746 篇 英文
  • 28 篇 其他
  • 19 篇 中文
检索条件"机构=National Engineering Laboratory for Big Data Analysis Technology and Application"
792 条 记 录,以下是771-780 订阅
排序:
Fusion of Visible and Infrared Images Based on IHS Transformation and Regional Variance Matching Degree
收藏 引用
IOP Conference Series: Earth and Environmental Science 2019年 第1期234卷
作者: Chengquan Zhou Jinling Zhao Zhenggao Pan Qi Hong Linsheng Huang National Engineering Research Center for Analysis and Application of Agro-Ecological Big Data Anhui University Hefei 230601 China Beijing Research Center for Information Technology in Agriculture Beijing 100097 China Information Engineering Institute Suzhou University Suzhou 234000 China
It is usually necessary to identify and extract specific characteristics by deriving an informative fused image from multiple images. An effective fusion algorithm was proposed by combining the intensity-hue-saturatio...
来源: 评论
Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma
收藏 引用
Radiography (London, England : 1995) 2025年 第4期31卷 102989页
作者: L Li D Yang Y Wu R Sun Y Qin M Kang X Deng M Bu Z Li Z Zeng X Zeng M Jiang B T Chen Department of Radiology First Affiliated Hospital of Guangxi Medical University Nanning 530021 Guangxi PR China. Department of Radiology Guizhou Provincial People Hospital No.83 East Zhongshan Road Nanming District Guizhou Province 550000 Guiyang PR China Engineering Research Center of Text Computing & Cognitive Intelligence Ministry of Education Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province State Key Laboratory of Public Big Data College of Computer Science and Technology Guizhou University No. 2870 Huaxi Avenue South Guiyang 550025 Guizhou PR China. Department of Radiology Guizhou Provincial People Hospital No.83 East Zhongshan Road Nanming District Guizhou Province 550000 Guiyang PR China. Department of Nuclear Medicine First Affiliated Hospital of Guangxi Medical University Nanning 530021 Guangxi PR China. Department of Radiation Oncology First Affiliated Hospital of Guangxi Medical University Nanning 530021 Guangxi PR China. Department of Radiology Guizhou Provincial People Hospital No.83 East Zhongshan Road Nanming District Guizhou Province 550000 Guiyang PR China. Electronic address: zengxianchun04@***. Department of Radiology First Affiliated Hospital of Guangxi Medical University Nanning 530021 Guangxi PR China. Electronic address: jmlgxmu@***. Department of Diagnostic Radiology City of Hope National Medical Center Duarte CA USA.
INTRODUCTION:To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (N... 详细信息
来源: 评论
Aggregation Signature for Small Object Tracking
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Yang, Jinyu Murino, Vittorio Zhang, Baochang Han, Jungong Guo, Guodong School of Electrical and Information Engineering Beihang University Beijing China Unmanned System Research Institute Beihang University Beijing China School of Computer Science University of Birmingham British United Kingdom University of Verona Verona Italy Pattern Analysis and Computer Vision department Istituto Italiano di Tecnologia Genoa Italy School of Automation Science and Electrical Engineering Beihang University Beijing China Shenzhen Academy of Aerospace Technology Shenzhen China WMG Data Science Group University of Warwick CoventryCV4 7AL United Kingdom Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
—Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and vari... 详细信息
来源: 评论
A fine-grained perspective on the robustness of global cargo ship transportation networks
收藏 引用
Journal of Geographical Sciences 2018年 第7期28卷 881-899页
作者: 彭澎 程诗奋 陈金海 廖梦迪 吴琳 刘希亮 陆锋 State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and Natural Resources Research CAS University of Chinese Academy of Sciences Navigation Aids Technology Research Center of Jimei University National & Local Joint Engineering Research Center for Marine Navigation Aids Services College of Geomatics Shandong University of Science and Technology Institute of Computing Technology CAS Fujian Collaborative Innovation Center for Big Data Applications in Governments Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while... 详细信息
来源: 评论
Mapping essential urban land use categories in China(EULUC-China):preliminary results for 2018
收藏 引用
Science Bulletin 2020年 第3期65卷 182-187页
作者: Peng Gong Bin Chen Xuecao Li Han Liu Jie Wang Yuqi Bai Jingming Chen Xi Chen Lei Fang Shuailong Feng Yongjiu Feng Yali Gong Hao Gu Huabing Huang Xiaochun Huang Hongzan Jiao Yingdong Kang Guangbin Lei Ainong Li Xiaoting Li Xun Li Yuechen Li Zhilin Li Zhongde Li Chong Liu Chunxia Liu Maochou Liu Shuguang Liu Wanliu Mao Changhong Miao Hao Ni Qisheng Pan Shuhua Qi Zhehao Ren Zhuoran Shan Shaoqing Shen Minjun Shi Yimeng Song Mo Su Hoi Ping Suen Bo Sun Fangdi Sun Jian Sun Lin Sun Wenyao Sun Tian Tian Xiaohua Tong Yihsing Tseng Ying Tu Hong Wang Lan Wang Xi Wan Zongming Wang Tinghai Wu Yaowen Xie Jian Yang Jun Yang Man Yuan Wenze Yue Hongda Zeng Kuo Zhang Neng Zhang Tao Zhang Yu Zhang Feng Zhao Yichen Zheng Qiming Zhou Nicholas Clinton Zhiliang Zhu Bing Xu Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System ScienceTsinghua UniversityBeijing 100084China Tsinghua Urban Institute Tsinghua UniversityBeijing 100084China Center for Healthy Cities Institute for China Sustainable UrbanizationTsinghua UniversityBeijing 100084China Department of Land Air and Water ResourcesUniversity of CaliforniaDavisCA 95616-8627USA Department of Geological and Atmospheric Sciences Iowa State UniversityAmesIA 50011USA State Key Laboratory of Remote Sensing Science Institute of Remote Sensing and Digital EarthChinese Academy of SciencesBeijing 100101China AI for Earth Laboratory Cross-Strait InstituteTsinghua UniversityBeijing 100084China International Institute for Earth System Sciences Nanjing UniversityNanjing 210093China Research Center for Ecology and Environment of Central Asia Chinese Academy of SciencesUrumchi 830011China Key Laboratory of Forest Ecology and Management Institute of Applied EcologyChinese Academy of SciencesShenyang 110016China National Engineering Laboratory for Applied Technology in Forestry&Ecology in South China College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangsha 410004China College of Surveying&Geo-Informatics Tongji UniversityShanghai 200092China Department of Urban Planning College of Architecture and Urban PlanningTongji UniversityShanghai 200092China Beijing Institute of Urban Planning Beijing 100045China Department of Urban Planning School of Urban DesignWuhan UniversityWuhan 430072China College of Earth Sciences Jilin UniversityChangchun 130061China Research Center for Digital Mountain and Remote Sensing Application Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengdu 610041China Institute of Remote Sensing and Geographic Information System School of Earth and Space SciencesPeking UniversityBeijing 100871China Department of Urban and Regional Planning School of Geography and PlanningSun Yat-sen Univ
Land use reflects human activities on *** land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and *** areas have widespread effects on local hydrology,climate,... 详细信息
来源: 评论
An automatic detection of green tide using multi-windows with their adaptive threshold from Landsat TM/ETM plus image
收藏 引用
Acta Oceanologica Sinica 2017年 第11期36卷 106-114页
作者: WANG Changying CHU Jialan TAN Meng SHAO Fengjing SUI Yi LI Shujing School of Data Science and Software Engineering Qingdao UniversityQingdao 266071China Institute of Big Data Technology and Smart City of Qingdao Qingdao 266071China Key laboratory of Marine Red Tide Disaster Three-dimensional Monitoring Technology and Application East China Sea BranchState Oceanic AdministrationShanghai 200080China National Marine Environmental Monitoring Center State Oceanic AdministrationDalian 116023China North China Sea Data and Information Service Center North China Sea BranchState Oceanic AdministrationQingdao 266061China
Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of... 详细信息
来源: 评论
Accurate spectral super-resolution from single RGB image using multi-scale CNN
arXiv
收藏 引用
arXiv 2018年
作者: Yan, Yiqi Zhang, Lei Li, Jun Zhang, Yanning Wei, Wei School of Electronics and Information Northwestern Polytechnical University Xi'an China School of Computer Science Northwestern Polytechnical University Xi'an China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology China Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation School of Geography and Planning Sun Yat-Sen University Guangzhou China
Different from traditional hyperspectral super-resolution ap-proaches that focus on improving the spatial resolution, spectral super-resolution aims at producing a high-resolution hyperspectral image from the RGB obse... 详细信息
来源: 评论
Unsupervised feature learning architecture with multi-clustering integration RBM
arXiv
收藏 引用
arXiv 2018年
作者: Chu, Jielei Wang, Hongjun Liu, Jing Gong, Zhiguo Li, Tianrui Institute of Artificial Intelligence School of Information Science and Technology Southwest Jiaotong University Chengdu611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu611756 China School of Business Sichuan University ChengduSichuan610065 China State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science University of Macau China
In this paper, we present a novel unsupervised feature learning architecture, which consists of a multi-clustering integration module and a variant of RBM termed multi-clustering integration RBM (MIRBM). In the multi-... 详细信息
来源: 评论
Robust frequent directions with application in online learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2019年 第1期20卷
作者: Luo Luo Cheng Chen Zhihua Zhang Wu-Jun Li Tong Zhang Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China National Engineering Lab for Big Data Analysis and Applications School of Mathematical Sciences Peking University Beijing China National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology Nanjing University Nanjing China Computer Science & Mathematics Hong Kong University of Science and Technology Hong Kong
The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient ma... 详细信息
来源: 评论
Biomedical image analysis competitions: The state of current participation practice
arXiv
收藏 引用
arXiv 2022年
作者: Eisenmann, Matthias Reinke, Annika Weru, Vivienn Tizabi, Minu Dietlinde Isensee, Fabian Adler, Tim J. Godau, Patrick Cheplygina, Veronika Kozubek, Michal Maier-Hein, Klaus Jäger, Paul F. Kopp-Schneider, Annette Maier-Hein, Lena Ali, Sharib Gupta, Anubha Kybic, Jan Noble, Alison de Solórzano, Carlos Ortiz Pachade, Samiksha Petitjean, Caroline Sage, Daniel Wei, Donglai Wilden, Elizabeth Alapatt, Deepak Andrearczyk, Vincent Baid, Ujjwal Bakas, Spyridon Balu, Niranjan Bano, Sophia Bawa, Vivek Singh Bernal, Jorge Bodenstedt, Sebastian Casella, Alessandro Choi, Jinwook Commowick, Olivier Daum, Marie Depeursinge, Adrien Dorent, Reuben Egger, Jan Eichhorn, Hannah Engelhardt, Sandy Ganz, Melanie Girard, Gabriel Hansen, Lasse Heinrich, Mattias Heller, Nicholas Hering, Alessa Huaulmé, Arnaud Kim, Hyunjeong Li, Hongwei Bran Landman, Bennett Li, Jianning Ma, Jun Martel, Anne Martín-Isla, Carlos Menze, Bjoern Nwoye, Chinedu Innocent Oreiller, Valentin Padoy, Nicolas Pati, Sarthak Payette, Kelly Sudre, Carole van Wijnen, Kimberlin Vardazaryan, Armine Vercauteren, Tom Wagner, Martin Wang, Chuanbo Yap, Moi Hoon Yu, Zeyun Yuan, Chun Zenk, Maximilian Zia, Aneeq Zimmerer, David Bao, Rina Choi, Chanyeol Cohen, Andrew Dzyubachyk, Oleh Galdran, Adrian Gan, Tianyuan Guo, Tianqi Gupta, Pradyumna Haithami, Mahmood Ho, Edward Jang, Ikbeom Li, Zhili Luo, Zhengbo Lux, Filip Makrogiannis, Sokratis Müller, Dominik Oh, Young-Tack Pang, Subeen Pape, Constantin Polat, Gorkem Reed, Charlotte Rosalie Ryu, Kanghyun Scherr, Tim Thambawita, Vajira Wang, Haoyu Wang, Xinliang Xu, Kele Yeh, Hung Yeo, Doyeob Yuan, Yixuan Zeng, Yan Zhao, Xin Abbing, Julian Adam, Jannes Adluru, Nagesh Agethen, Niklas Ahmed, Salman Al Khalil, Yasmina Alenyà, Mireia Alhoniemi, Esa An, Chengyang Arega, Tewodros Weldebirhan Avisdris, Netanell Aydogan, Dogu Baran Bai, Yingbin Calisto, Maria Baldeon Basaran, Berke Doga Beetz, Marcel Bian, Hao Blansit, Kevin Bloch, Louise Bohnsack, Robert Bosticardo, Sara Breen, Jack Brudfors, Mikael Brüngel, Raphael Cabezas, Mariano Cacciola, Alb Heidelberg Division of Intelligent Medical Systems Germany Heidelberg HI Helmholtz Imaging Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Heidelberg Division of Biostatistics Germany Heidelberg Division of Medical Image Computing Germany Heidelberg HI Applied Vision Lab Germany IT University of Copenhagen Copenhagen Denmark Centre for Biomedical Image Analysis Masaryk University Brno Czech Republic Heidelberg Interactive Machine Learning Group Germany Faculty of Mathematics and Computer Science and Medical Faculty Heidelberg University Heidelberg Germany NCT Heidelberg DKFZ University Hospital Heidelberg Germany School of Computing University of Leeds Leeds United Kingdom SBILab Department of ECE IIIT-Delhi India Faculty of Electrical Engineering Czech Technical University Prague Czech Republic Institute of Biomedical Engineering University of Oxford United Kingdom Center for Applied Medical Research Pamplona Spain Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Université de Rouen Normandie France Lausanne Switzerland School of Engineering and Applied Science Harvard University United States ICube University of Strasbourg CNRS France Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Techno-Pôle 3 Sierre3960 Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Rue du Bugnon 46 LausanneCH-1011 Switzerland University of Pennsylvania PhiladelphiaPA United States Department of Radiology University of Washington United States Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London United Kingdom Visual Artificial Intelligence Lab Oxford Brookes University Oxford United Kingdom Universitat Autònoma de Barcelona & Computer Vision Center Spain Dresden Fetscherstraße 74 PF 64 Dresden01307 Germany
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bott... 详细信息
来源: 评论