咨询与建议

限定检索结果

文献类型

  • 477 篇 期刊文献
  • 319 篇 会议

馆藏范围

  • 796 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 584 篇 工学
    • 319 篇 计算机科学与技术...
    • 276 篇 软件工程
    • 109 篇 信息与通信工程
    • 107 篇 生物工程
    • 84 篇 交通运输工程
    • 68 篇 光学工程
    • 64 篇 电气工程
    • 61 篇 生物医学工程(可授...
    • 57 篇 控制科学与工程
    • 57 篇 化学工程与技术
    • 49 篇 机械工程
    • 42 篇 电子科学与技术(可...
    • 41 篇 建筑学
    • 37 篇 材料科学与工程(可...
    • 37 篇 环境科学与工程(可...
    • 34 篇 土木工程
    • 28 篇 冶金工程
    • 23 篇 仪器科学与技术
  • 366 篇 理学
    • 181 篇 数学
    • 114 篇 生物学
    • 94 篇 物理学
    • 64 篇 统计学(可授理学、...
    • 54 篇 化学
    • 22 篇 系统科学
  • 150 篇 管理学
    • 103 篇 管理科学与工程(可...
    • 53 篇 工商管理
    • 53 篇 图书情报与档案管...
  • 36 篇 医学
    • 30 篇 临床医学
  • 29 篇 法学
    • 27 篇 社会学
  • 26 篇 经济学
    • 26 篇 应用经济学
  • 26 篇 农学
  • 10 篇 教育学
  • 3 篇 文学
  • 2 篇 军事学
  • 1 篇 艺术学

主题

  • 19 篇 deep learning
  • 14 篇 forecasting
  • 13 篇 feature extracti...
  • 12 篇 convolution
  • 11 篇 life cycle
  • 9 篇 neural networks
  • 9 篇 semantics
  • 9 篇 convolutional ne...
  • 8 篇 machine learning
  • 8 篇 transportation
  • 7 篇 covid-19
  • 7 篇 semantic segment...
  • 7 篇 self-supervised ...
  • 7 篇 optimization
  • 6 篇 reinforcement le...
  • 6 篇 image segmentati...
  • 6 篇 graph neural net...
  • 6 篇 computational mo...
  • 6 篇 costs
  • 6 篇 synthetic apertu...

机构

  • 47 篇 school of transp...
  • 44 篇 national enginee...
  • 40 篇 national enginee...
  • 30 篇 national enginee...
  • 22 篇 national enginee...
  • 21 篇 henan key labora...
  • 20 篇 peng cheng labor...
  • 20 篇 national enginee...
  • 18 篇 school of comput...
  • 17 篇 school of comput...
  • 16 篇 national enginee...
  • 14 篇 national enginee...
  • 14 篇 school of comput...
  • 14 篇 national and loc...
  • 13 篇 henan engineerin...
  • 13 篇 school of comput...
  • 13 篇 national united ...
  • 11 篇 national enginee...
  • 11 篇 school of transp...
  • 11 篇 college of compu...

作者

  • 46 篇 xia yong
  • 44 篇 zhang yanning
  • 19 篇 li tianrui
  • 19 篇 wang peng
  • 14 篇 xie yutong
  • 13 篇 xi xiaoli
  • 13 篇 liu yugang
  • 13 篇 chen geng
  • 11 篇 nie zuoren
  • 11 篇 chen enhong
  • 11 篇 tian chunwei
  • 11 篇 yang hongtai
  • 11 篇 bin cui
  • 10 篇 liao zehui
  • 10 篇 tong yang
  • 10 篇 sun zhanbo
  • 10 篇 zheng fangfang
  • 10 篇 gong xianzheng
  • 10 篇 zhang jianpeng
  • 10 篇 liu yu

语言

  • 749 篇 英文
  • 29 篇 其他
  • 19 篇 中文
检索条件"机构=National Engineering Laboratory for Big Data Analysis and Application Technology"
796 条 记 录,以下是621-630 订阅
排序:
Efficient and Environmentally Friendly Operation of Intermittent Dedicated Lanes for Connected Autonomous Vehicles in Mixed Traffic Environments
SSRN
收藏 引用
SSRN 2022年
作者: Chen, Shuiwang Hu, Lu Yao, Zhihong Zhu, Juanxiu Zhao, Bin Jiang, Yangsheng School of Transportation and Logistics Southwest Jiaotong University Chengdu610031 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Chengdu610031 China School of Management Xihua University Sichuan Chengdu610039 China School of Automobile & Transportation Engineering Xihua University Sichuan Chengdu610039 China
The emergence of connected autonomous vehicles (CAVs) provides a possibility to develop an efficient and sustainable mobility option. To foster the adoption of CAVs, the dedicated CAV lanes have been widely discussed ... 详细信息
来源: 评论
Two-Stage OD Flow Prediction for Emergency in Urban Rail Transit
收藏 引用
IEEE Transactions on Intelligent Transportation Systems 2024年 第1期25卷 920-928页
作者: Zhu, Guangyu Ding, Jiacun Wei, Yun Yi, Yang Xu, Sendren Sheng-Dong Wu, Edmond Q. Beijing Jiaotong University Key Lab. of Transport Industry of Big Data Application Technologies for Comprehensive Transport The Beijing Research Center of Urban Traffic Information Sensing and Service Technologies Beijing100044 China Beijing Mass Transit Railway Operation Corporation Ltd. Beijing100014 China Yangzhou University College of Information Engineering Yangzhou225127 China National Taiwan University of Science and Technology Automation and Control Center The Graduate Institute of Automation and Control Taipei106335 Taiwan Shanghai Jiao Tong University Key Laboratory of System Control and Information Processing Ministry of Education of China The Shanghai Engineering Research Center of Intelligent Control and Management Department of Automation Shanghai200240 China
Urban rail transit (URT) is vulnerable to natural disasters and social emergencies including fire, storm and epidemic (such as COVID-19), and real-time origin-destination (OD) flow prediction provides URT operators wi... 详细信息
来源: 评论
Pre-training Everywhere: Parameter-Efficient Fine-Tuning for Medical Image analysis via Target Parameter Pre-training
arXiv
收藏 引用
arXiv 2024年
作者: Lei, Xingliang Ye, Yiwen Chen, Ziyang Shu, Minglei Xia, Yong National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University China China Ningbo Institute of Northwestern Polytechnical University Ningbo315048 China Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen518057 China
Parameter-efficient fine-tuning (PEFT) techniques have emerged to address issues of overfitting and high computational costs associated with fully fine-tuning in the paradigm of self-supervised learning. Mainstream me... 详细信息
来源: 评论
Freight Transportation Structure Adjustment Control with Priority in Energy Consumption in China
SSRN
收藏 引用
SSRN 2022年
作者: Zuo, Dajie Liang, Qichen Zhan, Shuguang Huang, Wencheng Yang, Shenglan Wang, Mengyun School of Transportation and Logistics Southwest Jiaotong University Chengdu611756 China National and Local Joint Engineering Laboratory of Comprehensive Intelligent Transportation Southwest Jiaotong University Chengdu611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu611756 China Key Laboratory of Comprehensive Transportation of Sichuan Province Southwest Jiaotong University Chengdu611756 China
China has set the goal of controlling the total energy consumption to 6 billion tonnes of standard coal by 2030 in an attempt to avoid an energy crisis. Generally, freight transportation is an energy-intensive industr... 详细信息
来源: 评论
XCrossNet: Feature structure-oriented learning for click-through rate prediction
arXiv
收藏 引用
arXiv 2021年
作者: Yu, Runlong Ye, Yuyang Liu, Qi Wang, Zihan Yang, Chunfeng Hu, Yucheng Chen, Enhong Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Hefei China Management Science and Information Systems Rutgers Business School Rutgers University Newark United States MOE Key Laboratory of Computational Linguistics School of Electronics Engineering and Computer Science Peking University Beijing China Tencent Inc Shenzhen China
Click-Through Rate (CTR) prediction is a core task in nowadays commercial recommender systems. Feature crossing, as the mainline of research on CTR prediction, has shown a promising way to enhance predictive performan... 详细信息
来源: 评论
Perceptive self-supervised learning network for noisy image watermark removal
arXiv
收藏 引用
arXiv 2024年
作者: Tian, Chunwei Zheng, Menghua Li, Bo Zhang, Yanning Zhang, Shichao Zhang, David School of Software Northwestern Polytechnical University Xi’an710129 China National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Xi’an710129 China School of Electronics and Information Northwestern Polytechnical University Xi’an710129 China School of Computer Science Northwestern Polytechnical University National Engineering Laboratory for Integrated AeroSpace-Ground-Ocean Big Data Application Technology Xi’an710129 China Guangxi Key Lab of Multisource Information Mining & Security College of Computer Science & Engineering Guangxi Normal University Guilin541004 China Shenzhen518172 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen518172 China
Popular methods usually use a degradation model in a supervised way to learn a watermark removal model. However, it is true that reference images are difficult to obtain in the real world, as well as collected images ... 详细信息
来源: 评论
Group Multi-View Transformer for 3D Shape analysis with Spatial Encoding
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Lixiang Cui, Qingzhe Hong, Richang Xu, Wei Chen, Enhong Yuan, Xin Li, Chenglong Tang, Yuanyan The College of Artificial Intelligence and Big Data Hefei University Hefei230027 China The School of Computer Science and Information Engineering Hefei University of Technology Hefei230009 China The Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Anhui Hefei230000 China The School of Electrical and Mechanical Engineering The University of Adelaide AdelaideSA5005 Australia The School of Artificial Intelligence Anhui University Hefei230601 China The Zhuhai UM Science and Technology Research Institute FST University of Macau China
In recent years, the results of view-based 3D shape recognition methods have saturated, and models with excellent performance cannot be deployed on memory-limited devices due to their huge size of parameters. To addre... 详细信息
来源: 评论
A Wavelet-CNN-LSTM Model for Tailings Pond Risk Prediction
arXiv
收藏 引用
arXiv 2020年
作者: Yang, Jun Li, Qing Sun, Yixuan Wang, Wei Li, Linchao Wang, Xuwei Jia, Shengyao Tong, Renyuan National and Local Joint Engineering research center for Disaster Monitoring Technologies and Instruments China Jiliang University Hangzhou310051 China Zhejiang Provincial Key Laboratory of Intelligent Manufacturing Quality Big Data Traceability Analysis and Application China Jiliang University Hangzhou310051 China Zhejiang PeckerAI Technology. Ltd Hangzhou310018 China College of Computer Science and Technology Zhejiang University Hangzhou310027 China
Tailings ponds are places for storing industrial waste. The saturation line is the key factor of quantifying the safety of tailings pond. Existing saturation line time-series prediction methods are mainly based on sta... 详细信息
来源: 评论
Modelling the Bus Fleet Automation Transition Problem
SSRN
收藏 引用
SSRN 2024年
作者: Tang, Chunyan Liu, Yang Zhang, Jiyu Liu, Tao College of Transportation Engineering Dalian Maritime University Liaoning Province Dalian116026 China College of Transportation Engineering Chang’an University Shaanxi Xi’an China National Engineering Laboratory of Integrated Transportation Big Data Application Technology School of Transportation and Logistics Southwest Jiaotong University Chengdu611756 China National United Engineering Laboratory of Integrated and Intelligent Transportation School of Transportation and Logistics Southwest Jiaotong University Chengdu611756 China
Autonomous bus is known as a potential contributor in improving the service level and reducing vehicle operational cost due to without drivers. For this reason, replacing existing human driving buses with autonomous b... 详细信息
来源: 评论
Transformer-Based Hierarchical Dynamic Decoders for Salient Object Detection
SSRN
收藏 引用
SSRN 2023年
作者: Zheng, Qingping Zheng, Ling Deng, Jiankang Li, Ying Shang, Changjing Shen, Qiang School of Computer Science National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Provincial Key Laboratory of Speech & Image Information Processing Northewestern Polytechnical University Shaanxi Xi’an710129 China Fuzhou Institute of Data Technology Fujian350200 China Department of Computing Imperial College London LondonSW7 2AZ United Kingdom
HighlightsTransformer-Based Hierarchical Dynamic Decoders for Salient Object DetectionQingping Zheng, Ling Zheng, Jiankang Deng, Ying Li, Changjing Shang, Qiang Shen• T-HDDNet employs dynamic upsampling and fusion for... 详细信息
来源: 评论