咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 62 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 光学工程
    • 19 篇 信息与通信工程
    • 13 篇 化学工程与技术
    • 11 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 55 篇 理学
    • 23 篇 生物学
    • 20 篇 物理学
    • 19 篇 数学
    • 13 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 2 篇 海洋科学
    • 1 篇 地质学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 3 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 12 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 9 篇 training
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 computer archite...
  • 5 篇 face recognition
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 semantics
  • 4 篇 text analysis
  • 4 篇 computer vision
  • 4 篇 encoding
  • 4 篇 solid modeling
  • 3 篇 semantic segment...

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xia yong

语言

  • 131 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Application"
133 条 记 录,以下是11-20 订阅
排序:
CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing
IEEE Transactions on Biometrics, Behavior, and Identity Scie...
收藏 引用
IEEE Transactions on Biometrics, Behavior, and Identity Science 2020年 第2期2卷 182-193页
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guodong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Faculty of Information Technology Macau University of Science and Technology 999078 China Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Institute of Deep Learning Beijing100085 China Óptica y Electrónica Instituto Nacional de Astrofísica Puebla08007 Mexico Computer Science Department CINVESTAV-Zacatenco Mexico City07360 Mexico University of Chinese Academy of Sciences Beijing100049 China Westlake University Hangzhou310024 China
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
Sparse to dense motion transfer for face image animation
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Ruiqi Wu, Tianyi Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Face image animation from a single image has achieved remarkable progress. However, it remains challenging when only sparse landmarks are available as the driving signal. Given a source face image and a sequence of sp... 详细信息
来源: 评论
Feature Selective Transformer for Semantic Image Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Lin, Fangjian Wu, Tianyi Wu, Sitong Tian, Shengwei Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Recently, it has attracted more and more attentions to fuse multi-scale features for semantic image segmentation. Various works were proposed to employ progressive local or global fusion, but the feature fusions are n... 详细信息
来源: 评论
Multi-Task Neural learning Architecture for End-to-End Identification of Helpful Reviews
Multi-Task Neural Learning Architecture for End-to-End Ident...
收藏 引用
International Conference on Advances in Social Network Analysis and Mining, ASONAM
作者: Miao Fan Yue Feng Mingming Sun Ping Li Haifeng Wang Jianmin Wang National Engineering Laboratory of Deep Learning Technology and Application China School of Software Engineering Tsinghua University
Helpful reviews play a pivotal role in recommending desirable goods and accelerating purchase decisions of customers in e-commercial services. Given a large proportion of product reviews with unknown helpfulness/unhel... 详细信息
来源: 评论
AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection
AutoShape: Real-Time Shape-Aware Monocular 3D Object Detecti...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Zongdai Liu Dingfu Zhou Feixiang Lu Jin Fang Liangjun Zhang Robotics and Autonomous Driving Laboratory Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China
Existing deep learning-based approaches for monocular 3D object detection in autonomous driving often model the object as a rotated 3D cuboid while the object’s geometric shape has been ignored. In this work, we prop... 详细信息
来源: 评论
POEM: 1-bit point-wise operations based on expectation-maximization for efficient point cloud processing
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Sheng Li, Yanjing Zhao, Junhe Zhang, Baochang Guo, Guodong Beihang University Beijing China National Engineering Laboratory for Deep Learning Technology and Application Institute of Deep Learning Baidu Research Beijing China
Real-time point cloud processing is fundamental for lots of computer vision tasks, while still challenged by the computational problem on resource-limited edge devices. To address this issue, we implement XNOR-Net-bas... 详细信息
来源: 评论
AutoShape: Real-time shape-aware monocular 3D object detection
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Zongdai Zhou, Dingfu Lu, Feixiang Fang, Jin Zhang, Liangjun Robotics and Autonomous Driving Laboratory Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China
Existing deep learning-based approaches for monocular 3D object detection in autonomous driving often model the object as a rotated 3D cuboid while the object's geometric shape has been ignored. In this work, we p... 详细信息
来源: 评论
CATrans: Context and Affinity Transformer for Few-Shot Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Shan Wu, Tianyi Wu, Sitong Guo, Guodong Australian National University Canberra Australia Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Few-shot segmentation (FSS) aims to segment novel categories given scarce annotated support images. The crux of FSS is how to aggregate dense correlations between support and query images for query segmentation while ... 详细信息
来源: 评论
Mapfusion: A general framework for 3D object detection with HDMaps
arXiv
收藏 引用
arXiv 2021年
作者: Fang, Jin Zhou, Dingfu Song, Xibin Zhang, Liangjun Robotics and Autonomous Driving Laboratory Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China
3D object detection is a key perception component in autonomous driving. Most recent approaches are based on Lidar sensors only or fused with cameras. Maps (e.g., High Definition Maps), a basic infrastructure for inte... 详细信息
来源: 评论
Large scale autonomous driving scenarios clustering with self-supervised feature extraction
arXiv
收藏 引用
arXiv 2021年
作者: Zhao, Jinxin Fang, Jin Ye, Zhixian Zhang, Liangjun Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application China Baidu Research United States
The clustering of autonomous driving scenario data can substantially benefit the autonomous driving validation and simulation systems by improving the simulation tests' completeness and fidelity. This article prop... 详细信息
来源: 评论