咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 62 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 光学工程
    • 19 篇 信息与通信工程
    • 13 篇 化学工程与技术
    • 11 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 55 篇 理学
    • 23 篇 生物学
    • 20 篇 物理学
    • 19 篇 数学
    • 13 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 2 篇 海洋科学
    • 1 篇 地质学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 3 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 12 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 9 篇 training
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 computer archite...
  • 5 篇 face recognition
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 semantics
  • 4 篇 text analysis
  • 4 篇 computer vision
  • 4 篇 encoding
  • 4 篇 solid modeling
  • 3 篇 semantic segment...

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xia yong

语言

  • 131 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Application"
133 条 记 录,以下是61-70 订阅
排序:
Gradient descent meets shift-and-invert preconditioning for eigenvector computation  18
Gradient descent meets shift-and-invert preconditioning for ...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Zhiqiang Xu Big Data Lab (BDL-US) Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
Shift-and-invert preconditioning, as a classic acceleration technique for the leading eigenvector computation, has received much attention again recently, owing to fast least-squares solvers for efficiently approximat...
来源: 评论
GBCNs: Genetic Binary Convolutional Networks for enhancing the performance of 1-bit DCNNs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei W., Ding Y., Hu B., Zhang J., Liu G., Guo School of Electronic and Information Engineering Beihang University Unmanned System Research Institute Beihang University School of Automation Science and Electrical Engineering Beihang University Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Training 1-bit deep convolutional neural networks (DCNNs) is one of the most challenging problems in computer vision, because it is much easier to get trapped into local minima than conventional DCNNs. The reason lies... 详细信息
来源: 评论
Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation
Self-supervised Monocular Depth Estimation for All Day Image...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Lina Liu Xibin Song Mengmeng Wang Yong Liu Liangjun Zhang Institute of Cyber-Systems and Control Zhejiang University China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China Huzhou Institue of Zhejiang University China
Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades... 详细信息
来源: 评论
Self-supervised monocular depth estimation for all day images using domain separation
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Lina Song, Xibin Wang, Mengmeng Liu, Yong Zhang, Liangjun Institute of Cyber-Systems and Control Zhejiang University China Baidu Research China Huzhou Institue of Zhejiang University China National Engineering Laboratory of Deep Learning Technology and Application China
Remarkable results have been achieved by DCNN based self-supervised depth estimation approaches. However, most of these approaches can only handle either day-time or night-time images, while their performance degrades... 详细信息
来源: 评论
iffDetector: Inference-aware feature filtering for object detection
arXiv
收藏 引用
arXiv 2020年
作者: Mao, Mingyuan Tian, Yuxin Zhang, Baochang Ye, Qixiang Liu, Wanquan Guo, Guodong Doermann, David Beihang University Beijing China University of Chinese Academy of Sciences Beijing China Curtin University Perth Australia Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application University at Buffalo Buffalo United States
Modern CNN-based object detectors focus on feature configuration during training but often ignore feature optimization during inference. In this paper, we propose a new feature optimization approach to enhance feature... 详细信息
来源: 评论
Bi-level Doubly Variational learning for Energy-based Latent Variable Models
arXiv
收藏 引用
arXiv 2022年
作者: Kan, Ge Lü, Jinhu Wang, Tian Zhang, Baochang Zhu, Aichun Huang, Lei Guo, Guodong Snoussi, Hichem School of Automation Science and Electrical Engineering Institue of Artificial Intelligence Beihang University Beijing China School of Computer Science and Technology Nanjing Tech University Nanjing China Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application Beijing China University of Technology of Troyes Troyes France
Energy-based latent variable models (EBLVMs) are more expressive than conventional energy-based models. However, its potential on visual tasks are limited by its training process based on maximum likelihood estimate t... 详细信息
来源: 评论
Multi-Modal Face Presentation Attack Detection  1
收藏 引用
丛书名: Synthesis Lectures on Computer Vision
1000年
作者: Jun Wan Guodong Guo Sergio Escalera Hugo Jair Escalante Stan Z. Li
来源: 评论
IoU loss for 2D/3D object detection
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Dingfu Fang, Jin Song, Xibin Guan, Chenye Yin, Junbo Dai, Yuchao Yang, Ruigang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China Northwestern Polytechnical University Xi'an China
In 2D/3D object detection task, Intersection-over-Union (IoU) has been widely employed as an evaluation metric to evaluate the performance of different detectors in the testing stage. However, during the training stag... 详细信息
来源: 评论
Enhancing person-Job fit for talent recruitment: An ability-aware neural network approach
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Chuan Zhu, Hengshu Xu, Tong Zhu, Chen Jiang, Liang Chen, Enhong Xiong, Hui Anhui Province Key Lab of Big Data Analysis and Application University of Science and Technology of China Baidu Talent Intelligence Center Baidu Inc Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology an Application China
The wide spread use of online recruitment services has led to information explosion in the job market. As a result, the recruiters have to seek the intelligent ways for Person-Job Fit, which is the bridge for adapting... 详细信息
来源: 评论
RBCN: Rectified Binary convolutional networks for enhancing the Performance of 1-bit DCNNs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Xia, Xin Hu, Yuan Zhang, Baochang Liu, Jianzhuang Zhuang, Bohan Guo, Guodong School of Electronic and Information Engineering Beihang University Unmanned System Research Institute Beihang University School of Automation Science and Electrical Engineering Beihang University Huawei Noah's Ark Lab University of Adelaide Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Binarized convolutional neural networks (BCNNs) are widely used to improve memory and computation efficiency of deep convolutional neural networks (DCNNs) for mobile and AI chips based applications. However, current B... 详细信息
来源: 评论