咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 43 篇 会议
  • 1 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 62 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 光学工程
    • 19 篇 信息与通信工程
    • 13 篇 化学工程与技术
    • 11 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 电气工程
    • 4 篇 建筑学
    • 3 篇 材料科学与工程(可...
    • 3 篇 土木工程
    • 3 篇 船舶与海洋工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 安全科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
  • 55 篇 理学
    • 23 篇 生物学
    • 20 篇 物理学
    • 19 篇 数学
    • 13 篇 化学
    • 7 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 2 篇 海洋科学
    • 1 篇 地质学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 3 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 12 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 9 篇 training
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 computer archite...
  • 5 篇 face recognition
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 semantics
  • 4 篇 text analysis
  • 4 篇 computer vision
  • 4 篇 encoding
  • 4 篇 solid modeling
  • 3 篇 semantic segment...

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xia yong

语言

  • 131 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Application"
133 条 记 录,以下是71-80 订阅
排序:
3D Part Guided Image Editing for Fine-Grained Object Understanding
3D Part Guided Image Editing for Fine-Grained Object Underst...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Zongdai Liu Feixiang Lu Peng Wang Hui Miao Liangjun Zhang Ruigang Yang Bin Zhou State Key Laboratory of Virtual Reality Technology and Systems Beihang University Robotics and Autonomous Driving Laboratory Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China ByteDance Research University of Kentucky Peng Cheng Laboratory Shenzhen China
Holistically understanding an object with its 3D movable parts is essential for visual models of a robot to interact with the world. For example, only by understanding many possible part dynamics of other vehicles (e.... 详细信息
来源: 评论
Bayesian Optimized 1-Bit CNNs
Bayesian Optimized 1-Bit CNNs
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiaxin Gu Junhe Zhao Xiaolong Jiang Baochang Zhang Jianzhuang Liu Guodong Guo Rongrong Ji Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah’s Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
Bayesian optimized 1-Bit CNNs
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jiaxin Zhao, Junhe Jiang, Xiaolong Zhang, Baochang Liu, Jianzhuang Guo, Guodong Ji, Rongrong Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah's Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
Targeted hydrolysis of α-lactalbumin to reduce allergenicity based on the synergistic effect of pepsin and papain
收藏 引用
International journal of biological macromolecules 2025年 第Pt 4期311卷 144016页
作者: Qing Zhao Guangqing Mu Yijia Zheng Wenjiao Du Anqi Zhao Qi Sun Peng Sun Xiaomeng Wu Fanhua Kong School of Food Science and Technology Dalian Polytechnic University Dalian 116034 Liaoning China Dalian Key Laboratory of Functional Probiotics School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China. School of Food Science and Technology Dalian Polytechnic University Dalian 116034 Liaoning China. Dalian Key Laboratory of Functional Probiotics School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China Department of Agricultural Food and Nutritional Science University of Alberta Edmonton Alberta T6G 2P5 Canada. SKL of Marine Food Processing & Safety Control National Engineering Research Center of Seafood Collaborative Innovation Center of Seafood Deep Processing National & Local Joint Engineering School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China Laboratory for Marine Bioactive Polysaccharide Development and Application Liaoning Key Laboratory of Food Nutrition and Health School of Food Science and Technology Dalian Polytechnic University Dalian 116034 China. Electronic address: kkong0930@***.
Enzymolysis can effectively reduce the allergenicity of α-lactalbumin (ALA). Herein, complex enzymes targeted enzymolysis technology was developed to reduce the allergenicity of ALA, and the allergenicity of hydrolys... 详细信息
来源: 评论
Revisiting distillation and incremental classifier learning
arXiv
收藏 引用
arXiv 2018年
作者: Javed, Khurram Shafait, Faisal Deep Learning Laboratory National Center of Artificial Intelligence Islamabad Pakistan School of Electrical Engineering and Computer Science National University of Sciences and Technology
One of the key differences between the learning mechanism of humans and Artificial Neural Networks (ANNs) is the ability of humans to learn one task at a time. ANNs, on the other hand, can only learn multiple tasks si... 详细信息
来源: 评论
Out-of-town recommendation with travel intention modeling
arXiv
收藏 引用
arXiv 2021年
作者: Xin, Haoran Lu, Xinjiang Xu, Tong Liu, Hao Gu, Jingjing Dou, Dejing Xiong, Hui University of Science and Technology of China China Business Intelligence Lab Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China Nanjing University of Aeronautics and Astronautics China Rutgers University United States
Out-of-town recommendation is designed for those users who leave their home-town areas and visit the areas they have never been to before. It is challenging to recommend Point-of-Interests (POIs) for out-of-town users... 详细信息
来源: 评论
Spatial object recommendation with hints: When spatial granularity matters
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Hui Zhou, Jingbo Bao, Zhifeng Li, Shuangli Culpepper, J. Shane Ying, Haochao Liu, Hao Xiong, Hui RMIT University Australia Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China University of Science and Technology of China China Zhejiang University China Rutgers University United States
Existing spatial object recommendation algorithms generally treat objects identically when ranking them. However, spatial objects often cover different levels of spatial granularity and thereby are heterogeneous. For ... 详细信息
来源: 评论
ProposalContrast: Unsupervised Pre-training for LiDAR-based 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Junbo Zhou, Dingfu Zhang, Liangjun Fang, Jin Xu, Cheng-Zhong Shen, Jianbing Wang, Wenguan School of Computer Science Beijing Institute of Technology China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China SKL-IOTSC CIS University of Macau China ReLER AAII University of Technology Sydney Australia
Existing approaches for unsupervised point cloud pre-training are constrained to either scene-level or point/voxel-level instance discrimination. Scene-level methods tend to lose local details that are crucial for rec... 详细信息
来源: 评论
FaceScape: A Large-Scale High Quality 3D Face Dataset and Detailed Riggable 3D Face Prediction
FaceScape: A Large-Scale High Quality 3D Face Dataset and De...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Haotian Yang Hao Zhu Yanru Wang Mingkai Huang Qiu Shen Ruigang Yang Xun Cao Nanjing University Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications China University of Kentucky Inceptio Inc.
In this paper, we present a large-scale detailed 3D face dataset, FaceScape, and propose a novel algorithm that is able to predict elaborate riggable 3D face models from a single image input. FaceScape dataset provide... 详细信息
来源: 评论
IDARTS: Interactive Differentiable Architecture Search
IDARTS: Interactive Differentiable Architecture Search
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Song Xue Runqi Wang Baochang Zhang Tian Wang Guodong Guo David Doermann Beihang University Beijing China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing China Lobachevsky State University of Nizhni Novgorod Nizhni Novgorod Russian Federation National Engineering Laboratory for Deep Learning Technology and Application Institute of Deep Learning Baidu Research Beijing China University at Buffalo USA
Differentiable Architecture Search (DARTS) improves the efficiency of architecture search by learning the architecture and network parameters end-to-end. However, the intrinsic relationship between the architecture’s... 详细信息
来源: 评论