咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是1-10 订阅
排序:
Interactive grounded language acquisition and generalization in a 2D world  6
Interactive grounded language acquisition and generalization...
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Yu, Haonan Zhang, Haichao Xu, Wei Baidu Research Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
We build a virtual agent for learning language in a 2D maze-like world. The agent sees images of the surrounding environment, listens to a virtual teacher, and takes actions to receive rewards. It interactively learns... 详细信息
来源: 评论
Few-Shot learning with Complex-valued Neural Networks  31
Few-Shot Learning with Complex-valued Neural Networks
收藏 引用
31st British Machine Vision Conference, BMVC 2020
作者: Liu, Zhen Zhang, Baochang Guo, Guodong Beihang University Beijing China Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
Feature representation is fundamental and attracts much attention in few-shot learning. Convolutional neural networks (CNNs) are among the best feature extractors so far in this field, which are successfully combined ... 详细信息
来源: 评论
POEM: 1-bit Point-wise Operations based on Expectation-Maximization for Efficient Point Cloud Processing  32
POEM: 1-bit Point-wise Operations based on Expectation-Maxim...
收藏 引用
32nd British Machine Vision Conference, BMVC 2021
作者: Xu, Sheng Li, Yanjing Zhao, Junhe Zhang, Baochang Guo, Guodong Beihang University Beijing China National Engineering Laboratory for Deep Learning Technology and Application Institute of Deep Learning Baidu Research Beijing China
Real-time point cloud processing is fundamental for lots of computer vision tasks, while still challenged by the computational problem on resource-limited edge devices. To address this issue, we implement XNOR-Net-bas... 详细信息
来源: 评论
A new method of region embedding for text classification  6
A new method of region embedding for text classification
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Qiao, Chao Huang, Bo Niu, Guocheng Li, Daren Dong, Daxiang He, Wei Yu, Dianhai Wu, Hua Baidu Inc. Beijing China National Engineering Laboratory of Deep Learning Technology and Application China
To represent a text as a bag of properly identified "phrases" and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent the... 详细信息
来源: 评论
GINet: Graph Interaction Network for Scene Parsing  1
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Wu, Tianyi Lu, Yu Zhu, Yu Zhang, Chuang Wu, Ming Ma, Zhanyu Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Beijing University of Posts and Telecommunications Beijing China
Recently, context reasoning using image regions beyond local convolution has shown great potential for scene parsing. In this work, we explore how to incorperate the linguistic knowledge to promote context reasoning o... 详细信息
来源: 评论
DeLS-3D: deep localization and segmentation with a 3D semantic map
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Peng Yang, Ruigang Cao, Binbin Xu, Wei Lin, Yuanqing Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
For applications such as augmented reality, autonomous driving, self-localization/camera pose estimation and scene parsing are crucial technologies. In this paper, we propose a unified framework to tackle these two pr... 详细信息
来源: 评论
Adaptive cross-fusion learning for multi-modal gesture recognition
收藏 引用
Virtual Reality & Intelligent Hardware 2021年 第3期3卷 235-247页
作者: Benjia ZHOU Jun WAN Yanyan LIANG Guodong GUO Macao University of Science and Technology Macao 999078China National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of SciencesBeijing 100190China Baidu Research Beijing 100193Chinaand National Engineering Laboratory for Deep Learning Technology and ApplicationBeijing 100193China
Background Gesture recognition has attracted significant attention because of its wide range of potential *** multi-modal gesture recognition has made significant progress in recent years,a popular method still is sim... 详细信息
来源: 评论
Interactive language acquisition with one-shot visual concept learning through a conversational game
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Haichao Yu, Haonan Xu, Wei Baidu Research - Institue of Deep Learning Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
Building intelligent agents that can communicate with and learn from humans in natural language is of great value. Supervised language learning is limited by the ability of capturing mainly the statistics of training ... 详细信息
来源: 评论
Every Pixel Counts: Unsupervised geometry learning with holistic 3d motion understanding
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhenheng Wang, Peng Wang, Yang Xu, Wei Nevatia, Ram University of Southern California Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
learning to estimate 3D geometry in a single image by watching unlabeled videos via deep convolutional network has made significant process recently. Current state-of-the-art (SOTA) methods, are based on the learning ... 详细信息
来源: 评论
Occlusion aware unsupervised learning of optical flow
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Yang Yang, Yi Yang, Zhenheng Zhao, Liang Wang, Peng Xu, Wei Baidu Research University of Southern California National Engineering Laboratory for Deep Learning Technology and Applications
It has been recently shown that a convolutional neural network can learn optical flow estimation with unsuper-vised learning. However, the performance of the unsuper-vised methods still has a relatively large gap comp... 详细信息
来源: 评论