咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 35 篇 会议
  • 1 册 图书

馆藏范围

  • 125 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 82 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 21 篇 生物工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 9 篇 化学工程与技术
    • 8 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 交通运输工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 电气工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
  • 50 篇 理学
    • 21 篇 生物学
    • 16 篇 数学
    • 15 篇 物理学
    • 10 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地质学
    • 2 篇 系统科学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 地球物理学
  • 11 篇 管理学
    • 7 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 4 篇 医学
    • 2 篇 临床医学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 11 篇 feature extracti...
  • 10 篇 object detection
  • 10 篇 deep learning
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 computer archite...
  • 5 篇 deep neural netw...
  • 5 篇 face recognition
  • 5 篇 computer vision
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 task analysis
  • 4 篇 neural networks
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 encoding
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 large dataset
  • 3 篇 computerized tom...

机构

  • 26 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 national enginee...
  • 20 篇 institute of dee...
  • 12 篇 beihang universi...
  • 10 篇 national enginee...
  • 8 篇 deep learning la...
  • 7 篇 school of electr...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 rutgers universi...
  • 4 篇 northwestern pol...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 31 篇 guo guodong
  • 11 篇 zhang baochang
  • 11 篇 zhou dingfu
  • 10 篇 zhang liangjun
  • 10 篇 yang ruigang
  • 10 篇 fang jin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 9 篇 song xibin
  • 9 篇 faisal shafait
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 guodong guo
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 dai yuchao
  • 5 篇 zhu yu
  • 5 篇 xiong hui

语言

  • 123 篇 英文
  • 2 篇 其他
检索条件"机构=National Engineering Laboratory for Deep Learning Technology and Applications"
125 条 记 录,以下是101-110 订阅
排序:
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
Nested Collaborative learning for Long-Tailed Visual Recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jun Tan, Zichang Wan, Jun Lei, Zhen Guo, Guodong CBSR&NLPR Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science&Innovation Chinese Academy of Sciences Hong Kong
The networks trained on the long-tailed dataset vary remarkably, despite the same training settings, which shows the great uncertainty in long-tailed learning. To alleviate the uncertainty, we propose a Nested Collabo... 详细信息
来源: 评论
$\mathsf{NCF}$NCF: A Neural Context Fusion Approach to Raw Mobility Annotation
收藏 引用
IEEE Transactions on Mobile Computing 2020年 第1期21卷 226-238页
作者: Renjun Hu Jingbo Zhou Xinjiang Lu Hengshu Zhu Shuai Ma Hui Xiong SKLSDE Lab Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Talent Intelligence Center Baidu Inc. Beijing China Management Science and Information Systems Department Rutgers Business School Rutgers University Newark NJ USA
Understanding human mobility patterns at the point-of-interest (POI) scale plays an important role in enhancing business intelligence in mobile environments. While large efforts have been made in this direction, most ... 详细信息
来源: 评论
Residual Carbonate Karst Reservoir Reconstructed by Karst Planation: A Case Study of the Ordovician Paleokarst Reservoir in the Ordos Basin
SSRN
收藏 引用
SSRN 2022年
作者: Hou, Linjun Su, Zhongtang Wei, Liubin Wei, Xinshan Zhang, Chenggong Fu, Siyi Han, Yong Ren, Junfeng Chen, Hongde State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Chengdu University of Technology Chengdu610059 China Institute of Sedimentary Geology Chengdu University of Technology Chengdu610059 China Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications Ministry of Natural Resource Chengdu University of Technology Chengdu610059 China CNPC Key Laboratory of Carbonate Reservoir Hangzhou310023 China National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields Xi’an710018 China
Based on the global typical karst characteristics reported in recent years and the latest oil and gas exploration results, it is found that the characteristics of the karst reservoirs in the Ordos Basin are significan... 详细信息
来源: 评论
ChaLearn looking at people: IsoGD and ConGD large-scale RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2019年
作者: Wan, Jun Lin, Chi Wen, Longyin Li, Yunan Miao, Qiguang Escalera, Sergio Anbarjafari, Gholamreza Guyon, Isabelle Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China JD Finance Mountain ViewCA United States University of Southern California Los AngelesCA90089-0911 United States School of Computer Science and Technology Xidian University & Xi'an Key Laboratory of Big Data and Intelligent Vision 2nd South Taibai Road Xi'an710071 China Universitat de Barcelona Computer Vision Center Spain iCV Lab Institute of Technology University of Tartu Estonia Faculty of Engineering Hasan Kalyoncu University Gaziantep Turkey Institute of Digital Technologies Loughborough University London United Kingdom ChaLearn United States University Paris-Saclay France institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application China
The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer V... 详细信息
来源: 评论
Intelligent exploration for user interface modules of mobile app with collective learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Jingbo Tang, Zhenwei Zhao, Min Ge, Xiang Zhuang, Fuzhen Zhou, Meng Zou, Liming Yang, Chenglei Xiong, Hui Business Intelligence Lab Baidu Research Baidu TPG User Experience Department China National Engineering Laboratory of Deep Learning Technology and Application China Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing University of Posts and Telecommunications China Peking University China Shandong University China Rutgers University United States
A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods ... 详细信息
来源: 评论
Aggregation Signature for Small Object Tracking
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei Ding, Wenrui Yang, Jinyu Murino, Vittorio Zhang, Baochang Han, Jungong Guo, Guodong School of Electrical and Information Engineering Beihang University Beijing China Unmanned System Research Institute Beihang University Beijing China School of Computer Science University of Birmingham British United Kingdom University of Verona Verona Italy Pattern Analysis and Computer Vision department Istituto Italiano di Tecnologia Genoa Italy School of Automation Science and Electrical Engineering Beihang University Beijing China Shenzhen Academy of Aerospace Technology Shenzhen China WMG Data Science Group University of Warwick CoventryCV4 7AL United Kingdom Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
—Small object tracking becomes an increasingly important task, which however has been largely unexplored in computer vision. The great challenges stem from the facts that: 1) small objects show extreme vague and vari... 详细信息
来源: 评论
A new weighting scheme for fan-beam and circle cone-beam CT reconstructions
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian Wang, Tianfu Lei, Baiying The School of Biomedical Engineering Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China The Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States The College of Mathematics and Statistics Chongqing University Chongqing China The College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China The Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we first present an arc based algorithm for fan-beam computed tomography (CT) reconstruction via applying Katsevich’s helical CT formula to 2D fan-beam CT reconstruction. Then, we propose a new weighti... 详细信息
来源: 评论
A model-guided deep network for limited-angle computed tomography
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian Wang, Tianfu Lei, Baiying School of Biomedical Engineering Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Department of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States College of Mathematics and Statistics Chongqing University Chongqing China College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
In this paper, we first propose a variational model for the limited-angle computed tomography (CT) image reconstruction and then convert the model into an end-to-end deep network. We use the penalty method to solve th... 详细信息
来源: 评论
A deep network for sinogram and CT image reconstruction
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Wei Xia, Xiang-Gen He, Chuanjiang Ren, Zemin Lu, Jian Wang, Tianfu Lei, Baiying School of Biomedical Engineering Shenzhen University National-Regional Key Technology Engineering Laboratory for Medical Ultrasound Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China College of Information Engineering Shenzhen University Shenzhen China College of Electrical and Computer Engineering University of Delaware NewarkDE19716 United States College of Mathematics and Statistics Chongqing University Chongqing China College of Mathematics and Physics Chongqing University of Science and Technology Chongqing China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen China
A CT image can be well reconstructed when the sampling rate of the sinogram satisfies the Nyquist criteria and the sampled signal is noise-free. However, in practice, the sinogram is usually contaminated by noise, whi... 详细信息
来源: 评论